Coagulation Factors in Multiple Sclerosis may Represent Diagnostic and Therapeutic Strategies

Mokhtar Ahmadi*, Hossein Feizi, Fatemeh Shahbeigi

Islamic Azad University, Mashhad Branch, Mashhad, Iran

Published: 11 April, 2017

Abstract

Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease which mediated by various molecular and cellular immune components. However, recent reports have shown that coagulation factors that traditionally separate from the immune system might also be involved in MS development and progression. Studies on experimental autoimmune encephalomyelitis (EAE) and human MS patients report alterations of some factors of the coagulation cascade such as fibrin, thrombin, prothrombin, factor X, and FXII to confirm that coagulation factors have an important role in pathogenesis of autoimmune inflammatory disorders. Recent studies report that genetic deficiency or pharmacologic blockade of FXII significantly protected from EAE and also fibrin depletion, either genetically or using anticoagulants, significantly reduces neuroinflammation, and axonal damage in EAE. Another important study shows that increased thrombin activity is an early event and increases with progression of neuroinflammatory disease, with noted microglial activation and axonal damage. In this review we aim to evaluate elevated coagulation factors of tissue or blood as a new therapeutic strategy for the treatment of MS or other neuroinflammatory disorders. As we described some coagulation factors such as fibrin and thrombin are significantly increased in MS and blockade of this factors in EAE improve neuroinflammation, and axonal damage so maybe using anticoagulants in clinical trials develop treatment of MS.

Keywords: Coagulation factor, Multiple sclerosis, MS, Neuroinflammation

*Corresponding Author: Mokhtar Ahmadi
Email: Mokhtarahmadi88@yahoo.com