Phylogenetic Study of Alpha Subunits of GABA_A Receptor between Human and Rat

Arash Alaeddini¹, Fatemeh Alipour², Zahrasadat Hashemi³, SayedMostafa Modarres Mousavi²-⁴*

¹Seraj Center, Passive Defense Faculty and Research Center, Imam Hussein Comprehensive University, Tehran, Iran
²Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
³E. N. T Group, Amir-Alam Hospital, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
⁴Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

ABSTRACT

Introduction: Neurons secreting gamma aminobutyric acid (GABA), an inhibitory neurotransmitter, as their primary neurotransmitter are named GABAergic neurons. Phylogenetics based on sequence data provides more accurate descriptions of patterns of relatedness. Materials and Methods: After alignment of mRNA complete gene sequences of alpha GABA_A subunits in homosapiens and rattus norvegicus species, the phylogenetic tree were constructed with CLC Main Workbench 5.5 software. Results: The findings revealed 100 percent similarities between alpha 1, alpha 3, and alpha 6 subunits of GABA_A receptor in homosapiens and rattus norvegicus. Furthermore, the highest rate of divergences observed between alpha 1 subunit with alpha 3, alpha 4, alpha 5, and alpha 6 subunits in both species. Conclusion: The highest similarities among alpha subunits of GABA_A in human and rat suggest the accuracy of rat models for experimental studies on inhibitory neurotransmitters in the central nervous system.

Key words:
1. gamma-Aminobutyric Acid
2. Family Relations
3. GABAergic Neurons
4. Brain

*Corresponding Author: Sayed Mostafa Modarres Mousavi
E-mail: modarres.mousavi@gmail.com
مطالعه فیلوژنتیکی زیرواحدهای α گیرنده ΓABای بین انسان و موش صحرایی

آرش علاءالدینی، فاطمه على بور، زهرا صادقی‌نیا
سید مصطفی مدرس موسوی، زهراسادات هاشمی، فاطمه علی پور، آرش علاءالدینی
مرکز سراج، دانشگاه و پژوهشگاه بیمارستان شهید بهشتی، تهران، ایران
گروه گوش حلق بینی و جراحی سر و گردن، بیمارستان امیر المومنین، تهران، ایران
گروه نانوبیوتکنولوژی، دانشگاه علوم پزشکی تهران، ایران
مقدمه:
نورون‌های برعکس کننده گاما-آمینو بوتیریک اسید که یک ناقل عصبی مهم است و به عنوان ناقل عصبی اصلی شناخته می‌شود، نورون‌های گابایرژیک نامیده می‌شوند. پژوهش‌های فیلوژنتیک بر اساس اطلاعات ترنبی توصیف دقیقی از الگوهای وابستگی را فراهم می‌نماید. نمونه‌ها: در انسان و موش صحرایی، درخت GABAγ آلفا-نواحی DNA در همه الگوهای فیلوژنتیک با نرم‌افزار CLC Main Workbench 5.5 به ترتیب توصیف و با توجه به تفاوت درصدی میزان تشابه نواحی DNA، بین نواحی DNA، α_6 و α_5, α_4، α_3 و α_1 میزان واگرایی میان نواحی DNA، α_6 و α_5, α_4، α_3 با نواحی DNA در انسان و موش صحرایی به دقت مدل‌های موش صحرایی برای مطالعه تحریک بر روی ناقلین عصبی مهاری در سیستم عصبی مراکزی اشاره می‌نماید.

نتیجه‌گیری:
تشبیهات بسیار میان نواحی DNA فیلوژنتیکی ΓABAγ انسان و موش صحرایی به دقت مدل‌های موش صحرایی برای مطالعه تحریک بر روی ناقلین عصبی مهاری در سیستم عصبی مراکزی اشاره می‌نماید.

کلید واژه‌ها:
1. گاما-آمینو بوتیریک اسید
2. نواحی DNA
3. نواحی DNA
4. میزان واگرایی

نویسنده مسئول: سید مصطفی مدرس موسوی
آدرس الکترونیکی: modarres.mousavi@gmail.com
مقدمه

صبر یکی از مهم‌ترین اختلالات عصبی است که حدد ۳ درصد افراد مبتلا می‌باشد. این سیستم تحت اثر استرس می‌باشد و عمدتاً توسط گیرنده‌های GABA_آ\(^{-}\) در مغز اشکال‌دهی می‌شود. در صورت عدم اصلاح، ممکن است باعث کاهش فعالیت مغز و تغییرات انتخاباتی گردد.

مواد و روش‌ها

پس از استخراج فعالیت سکانس‌های رادیوپترافی instaFASTA در ناحیه‌های مغزی مربوط به GABA_آ\(^{-}\) و GABA_آ\(^{+}\) mRNA می‌باشد. در این‌جا به ارتباطات پژوهشی مربوط به این گروه‌ها در مختلف مطالعات مختلف دیده می‌شود. به همین ترتیب در مطالعه‌های مختلفی، این گروه‌ها در بررسی‌های مختلف مربوط به اختلالات عصبی معرفی شدند. با این حال، به‌طور کلی، این گروه‌ها در این مطالعات به عنوان یکی از مثال‌های مورد بررسی قرار گرفتند.

بحث و نتیجه‌گیری

همان‌گونه که پیش از این اشاره گردید، نشان دهنده ویژگی‌هایی برای GABA_آ\(^{-}\) و GABA_آ\(^{+}\) mRNA می‌باشد که ممکن است باعث کاهش تعداد گیرنده‌های GABA_آ\(^{-}\) در مغز شود. این مطالعه به‌طور کلی در این مورد به عنوان یکی از مثال‌های مورد بررسی قرار گرفت

1.Alignment

