Application of Neural Stem Cells Derived from Human Meningioma in Traumatic Brain Injury

Sajad Sahab Negah1, 2, Pardis Oliazadeh1, Ali Jahanbazi Jahan Abad2, Arezou Es’haghabadi2, Sedigeh Ghasemi2, Fatemeh Gholami1, Ali Gorji1, 2, 3*

1Neuroscience Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
3Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
4Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Robert-Koch-Straße 45, 48149 Münster, Germany

Abstract

Traumatic brain injury is considered as one of the main causes of morbidity and mortality worldwide. Apart from primary mechanical injury, secondary injuries due to inflammation and apoptosis result in great neuronal damage. Current treatments are not able to regenerate the damaged part and prevent future sequels. Using human stem cells with self-assembling scaffolds may be promising in treatment of traumatic brain injury. Human meningioma stem cells were isolated, cultured and expanded into in vitro condition. The rat models of TBI were divided into 5 groups: sham, PBS, stem cells, scaffold and stem cell+scaffold. mNSS and EEG were performed to evaluate movement and physical activity. IHC were done to assess cell differentiation. Inflammation and apoptosis markers like toll like receptors, caspase 3,8 and TNF-a were analyzed using western blotting and PCR methods. Results showed that inflammation was significantly reduced in cell group. Tissue engineering as a new therapeutic method can be promising in treating brain damage.

Keywords: Neural Tissue Engineering, Traumatic Brain Injury, Human Neural Stem Cells

*Corresponding Author: Ali Gorji
Email: gorjial@uni-muenster.de