Proteinase-Activated Receptors in The Nervous System: Physiological and Pathological Aspects

Atefeh Aminian¹, Farshid Noorbakhsh²

¹Department of Pharmacology, Arak University of Medical Sciences, Arak, Iran
²Department of Immunology, Tehran University of Medical Sciences, Tehran, Iran

ABSTRACT

Introduction: Proteinase-activated receptors (PARs), a family of four G protein-coupled receptors, are characterized by their unique activation mechanism which involves the proteolytic unmasking of a tethered ligand. To date, four PARs receptors have been discovered in human and mammals. All four members of the PARs family are expressed in the nervous system, where they have been shown to affect neural cell morphology, proliferation, and function. Furthermore, PARs play significant roles in degenerative and neuroinflammatory diseases, including Alzheimer’s disease, multiple sclerosis, HIV-associated dementia, and stroke. The widespread distribution of PARs in the nervous system and their potential roles in different disorders make them attractive therapeutic targets for neurological diseases. Conclusion: In this review we summarize the roles of PARs in the central and peripheral nervous systems in the physiological setting as well as in pathological conditions.

Key words:
1. Receptors, Proteinase-Activated
2. Thrombin
3. Central Nervous System

*Corresponding Author: Farshid Noorbakhsh
E-mail: f-noorbakhsh@sina.tums.ac.ir
پاتولوژی و فیزیولوژی، جنبه‌های فیزیولوژی و پاتولوژی
گیرنده‌های فعال شونده با پروتئیناز در سیستم عصبی، جنبه‌های فیزیولوژی و پاتولوژی

عاطفه امینیان، فرشید نوربخش
گروه فارماکولوژی، دانشگاه علوم پزشکی اراک، اراک، ایران
گروه ایمونولوژی، دانشگاه علوم پزشکی تهران، تهران، ایران

اطلاعات مقاله
تاريخ پذیرش: 15 بهمن 1396
نگاره‌ذاتی مقاله: 9 آذر 1396

چکیده
کلمه‌های کلیدی:
- گیرنده‌های فعال شونده با پروتئیناز
- ترومبین
- سیستم عصبی
- مراکز پروتئین

مقدمه: گیرنده‌های فعال شونده با پروتئیناز، خانواده‌ای متشکل از 4 گیرنده متصل شونده به G پروتئین مستند که با مکان‌یابی فعال‌سازی خاص آن‌ها مشخص می‌شود و مستلزم آشکار شدن لیگاند شونده است. بیماری‌ای که مبتلا به آن شده‌ایم، که نشان داده شده است، بر اثر خاصیت فعالسازی خاصی این گیرنده‌ها است. در انسان و بسیاری از گونه‌های دیگر نیز گیرنده‌های پروتئولیتیک در سیستم عصبی بیان شده‌اند. جایی که نشان داده شده است، برای اکتشافاتی در محیطی و مرکزی سیستم عصبی، مانند HIV، سکته مغزی، اسکلروز، آلزایمر، نارسایی‌های سرماخوردگی و HIV، بیماری‌های آلزایمر و سکته مغزی نقش دارند. به علاوه توزیع جغرافیایی این نشان‌دهنده‌ها در سیستم عصبی در بیماری‌های آلزایمر، سکته مغزی و HIV‌شناسی نقش دارد. در این مقاله ما نقش گیرنده‌های پروتئولیتیک در مشخص‌کردن بیماری‌های شایع در سیستم عصبی می‌پردازیم.

نتایج‌گیری: برای اختلالات عصبی تبدیل نموده است.

نویسنده مسئول: فرشید نوربخش
آدرس الکترونیکی: f-noorbakhsh@sina.tums.ac.ir
مقدمه

گیرنده‌های فعال‌شونده با پروتئیناز (PARs) خانواده GPCR (G protein–coupled receptors) هستند که در انواع زیادی از سلول‌های یافته می‌شوند و به وسیله مکانیسم محرک به فردی که شامل اشکال‌سازی پروتئولیتیک سل ساقه آمیقینی گیرنده است فعال می‌گردد. این گیرنده‌ها در پاتوژنیک سلولی ligand فعال‌شونده فعال‌شونده می‌شوند. پاتوژنیک سلولی PAR می‌تواند به وسیله پپتیدهای کوچکی که مشابه سکانس SLIGRL و PAR1 بوده و به وسیله G protein–coupled receptors (GPCRs) فعال‌شونده فعال‌شونده می‌شود.

<table>
<thead>
<tr>
<th>جدول 1</th>
<th>خصوصیات گیرنده‌های فعال‌شونده با پروتئیناز (PARs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR4</td>
<td>PAR3</td>
</tr>
<tr>
<td>تریپсин، تریپسین، تریپسین، تریپسین</td>
<td>تریپسین، تریپسین، تریپسین</td>
</tr>
<tr>
<td>GLIGRVQ</td>
<td>GTRGAP</td>
</tr>
<tr>
<td>GYPGQV, YHIPK, YHIPK</td>
<td>HIERLH2</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>ERK1/2</td>
</tr>
</tbody>
</table>

91 اولین بار در روند جستجوی پروتئین‌های فعال‌شونده با پروتئیناز در یک پاتوژنیک گیرنده‌ای که افرادی که تریپسین و نیز گیرنده‌های فعال‌شونده بودند، مطالعه یافته‌اند. این پاتوژنیک سلولی PAR می‌تواند به وسیله پپتیدهای کوچکی که مشابه سکانس SLIGRL و PAR1 بوده و به وسیله G protein–coupled receptors (GPCRs) فعال‌شونده فعال‌شونده می‌شود.

بیشتر پیش‌بینی می‌گردد، هستند (جدول 1). پس از آن، پاتوژنیک سلولی PAR می‌تواند به وسیله پپتیدهای کوچکی که مشابه سکانس SLIGRL و PAR1 بوده و به وسیله G protein–coupled receptors (GPCRs) فعال‌شونده فعال‌شونده می‌شود.

1) پروتئین‌های فعال‌شونده با پروتئیناز (PARs)
2) G protein–coupled receptor
پیشنهادی سنتزیکی تکنیکی که مشاهده شده است که با تولید پپتیدهای سنتزیکی کوتاه، می‌تواند به عنوان tethered ligand یا گروه درکی از مکانیسم‌ها، بکارگیری شود. با توجه به اینکه آیا این گروه توانایی سیگنال دادن به PAR3 خودش را دارد یا نه، تحقیقات بیشتری باید انجام شود.

توضیحات

<table>
<thead>
<tr>
<th>مکانیسم‌های پیام‌رسانی PARs</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین‌های متغیر</td>
<td>PAR2 و PAR4، که فعال‌سازی می‌شوند، با توجه به اینکه آیا این گروه توانایی سیگنال دادن به PAR3 خودش را دارد یا نه، تحقیقات بیشتری باید انجام شود.</td>
</tr>
<tr>
<td>فعال‌سازی biased</td>
<td>PAR1 و PAR3، که با توجه به اینکه آیا این گروه توانایی سیگنال دادن به PAR3 خودش را دارد یا نه، تحقیقات بیشتری باید انجام شود.</td>
</tr>
<tr>
<td>فعال‌سازی non-tethered</td>
<td>PAR2 و PAR4، که فعال‌سازی می‌شوند، با توجه به اینکه آیا این گروه توانایی سیگنال دادن به PAR3 خودش را دارد یا نه، تحقیقات بیشتری باید انجام شود.</td>
</tr>
<tr>
<td>Proteolytic disarming</td>
<td>PAR2 و PAR4، که فعال‌سازی می‌شوند، با توجه به اینکه آیا این گروه توانایی سیگنال دادن به PAR3 خودش را دارد یا نه، تحقیقات بیشتری باید انجام شود.</td>
</tr>
</tbody>
</table>

مطالعات جدید

معمولاً تهیه می‌شود که علاوه بر مکانیسم پروتئین‌ها، فعال‌سازی PARs را به وسیله G عامل‌ها می‌تواند منجر به کاهش یا افزایش گردند. به علاوه اینکه بر اثر ترومبین، PAR4، به عنوان کوایتکتور فعال شدن PAR نشان داده شده است. همچنین می‌تواند به وسیله G عامل‌ها می‌تواند منجر به کاهش یا افزایش گردند.

مثال

در آزمایشگاه‌های مورد استفاده در مطالعات پیام‌رسانی، PARs به وسیله G عامل‌ها می‌تواند منجر به کاهش یا افزایش گردند. به علاوه اینکه بر اثر ترومبین، PAR4، به عنوان کوایتکتور فعال شدن PAR نشان داده شده است. همچنین می‌تواند به وسیله G عامل‌ها می‌تواند منجر به کاهش یا افزایش گردند.

جدول

<table>
<thead>
<tr>
<th>PARs</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR1</td>
<td>توانایی سیگنال دادن به PAR3 خودش را دارد یا نه، تحقیقات بیشتری باید انجام شود.</td>
</tr>
<tr>
<td>PAR2</td>
<td>توانایی سیگنال دادن به PAR3 خودش را دارد یا نه، تحقیقات بیشتری باید انجام شود.</td>
</tr>
<tr>
<td>PAR3</td>
<td>توانایی سیگنال دادن به PAR3 خودش را دارد یا نه، تحقیقات بیشتری باید انجام شود.</td>
</tr>
<tr>
<td>PAR4</td>
<td>توانایی سیگنال دادن به PAR3 خودش را دارد یا نه، تحقیقات بیشتری باید انجام شود.</td>
</tr>
</tbody>
</table>

منابع

1. Signaling
2. Mitogen-activated protein kinase
3. Central nervous system
4. Peripheral nervous system
شکل که همه امکانات لازم برای تولید، فعال شدن و تنظیم ترومبوپین در سیستم ایمنی موجود است، بین پروتئین‌ها و نیز فاکتور X (عفاولی کننده اصلی پروتئین‌ها) در سطح مورپوئتیک و پروتئین‌های در شرایط سلولی و گونه‌های مختلف mRNA مجوز شده و مصرف عمومی در طول این جریان شده است (13). همچنین مهارکننده‌های بلندری ترومبوپین همانند پروتوپان (P1) و (آتکن 3) (P2) و ترومبوپین 3 (P3) از بهبود گونه‌های ترومبین‌ها اخراج و پیشگیری از ایجاد میزان برای توقف سرطانی PAR ها که علم شده‌اند، هم‌عفونی PAR، مجموعی PAR، آسیب‌های بیشتر و وارد کردن CNS هما به راه انجام می‌پذیرد. به عنوان مثال، پار بروز مصرفی PAR2 به یاد نسبت به آسیب مغزی. باعث کاهش حجم سکته می‌شود. این مطالعات نشان می‌دهد که زیرا این مطالعات به عنوان یک میژد مغزی باعث کاهش آسیب نورونی دیپامینرژیک و تکثیر آسانی در کشتهای نورونی و نواحی مختلف مغزی می‌شود و در مطالعات برون‌تنی انجام شده است. همچنین مهارکننده‌های اختصاصی PAR1 و PAR2 در بهبود گونه‌های ترومبین‌ها اخراج و پیشگیری از ایجاد میزان برای توقف سرطانی PAR ها که علم شده‌اند، هم‌عفونی PAR، مجموعی PAR، آسیب‌های بیشتر و وارد کردن CNS هما به راه انجام می‌پذیرد. به عنوان مثال، پار بروز مصرفی PAR2 به یاد نسبت به آسیب مغزی. باعث کاهش حجم سکته می‌شود. این مطالعات نشان می‌دهد که زیرا این مطالعات به عنوان یک میژد مغزی باعث کاهش آسیب نورونی دیپامینرژیک و تکثیر آسانی در کشتهای نورونی و نواحی مختلف مغزی می‌شود و در مطالعات برون‌تنی انجام شده است. همچنین مهارکننده‌های اختصاصی PAR1 و PAR2 در بهبود گونه‌های ترومبین‌ها اخراج و پیشگیری از ایجاد میزان برای توقف سرطانی PAR ها که علم شده‌اند، هم‌عفونی PAR، مجموعی PAR، آسیب‌های بیشتر و وارد کردن CNS هما به راه انجام می‌پذیرد. به عنوان مثال، پار بروز مصرفی PAR2 به یاد نسبت به آسیب مغزی. باعث کاهش حجم سکته می‌شود. این مطالعات نشان می‌دهد که زیرا این مطالعات به عنوان یک میژد مغزی باعث کاهش آسیب نورونی دیپامینرژیک و تکثیر آسانی در کشتهای نورونی و نواحی مختلف مغزی می‌شود و در مطالعات برون‌تنی انجام شده است. همچنین مهارکننده‌های اختصاصی PAR1 و PAR2 در بهبود گونه‌های ترومبین‌ها اخراج و پیشگیری از ایجاد میزان برای توقف سرطانی PAR ها که علم شده‌اند، هم‌عفونی PAR، مجموعی PAR، آسیب‌های بیشتر و وارد کردن CNS هما به راه انجام می‌پذیرد. به عنوان مثال، پار بروز مصرفی PAR2 به یاد نسبت به آسیب مغزی. باعث کاهش حجم سکته می‌شود. این مطالعات نشان می‌دهد که زیرا این مطالعات به عنوان یک میژد مغزی باعث کاهش آسیب نورونی دیپامینرژیک و تکثیر آسانی در کشتهای نورونی و نواحی مختلف مغزی می‌شود و در مطالعات برون‌تنی انجام شده است. همچنین مهارکننده‌های اختصاصی PAR1 و PAR2 در بهبود گونه‌های ترومبین‌ها اخراج و پیشگیری از ایجاد میزان برای توقف سرطانی PAR ها که علم شده‌اند، هم‌عفونی PAR، مجموعی PAR، آسیب‌های بیشتر و وارد کردن CNS هما به راه انجام می‌پذیرد. به عنوان مثال، پار بروز مصرفی PAR2 به یاد نسبت به آسیب مغزی. باعث کاهش حجم سکته می‌شود. این مطالعات نشان می‌دهد که زیرا این مطالعات به عنوان یک میژد مغزی باعث کاهش آسیب نورونی دیپامینرژیک و تکثیر آسانی در کشتهای نورونی و نواحی مختلف مغزی می‌شود و در مطالعات برون‌تنی انجام شده است. همچنین مهارکننده‌های اختصاصی PAR1 و PAR2 در بهبود گونه‌های ترومبین‌ها اخراج و پیشگیری از ایجاد میزان برای توقف سرطانی PAR ها که علم شده‌اند، هم‌عفونی PAR، مجموعی PAR، آسیب‌های بیشتر و وارد کردن CNS هما به راه انجام می‌پذیرد. به عنوان مثال، پار بروز مصرفی PAR2 به یاد نسبت به آسیب مغزی. باعث کاهش حجم سکته می‌شود. این مطالعات نشان می‌دهد که زیرا این مطالعات به عنوان یک میژد مغزی باعث کاهش آسیب نورونی دیپامینرژیک و تکثیر آسانی در کشتهای نورونی و نواحی مختلف مغزی می‌شود و در مطالعات برون‌تنی انجام شده است. همچنین مهارکننده‌های اختصاصی PAR1 و PAR2 در بهبود گونه‌های ترومبین‌ها اخراج و پیشگیری از ایجاد میزان برای توقف سرطانی PAR ها که علم شده‌اند، هم‌عفونی PAR، مجموعی PAR، آسیب‌های بیشتر و وارد کردن CNS هما به راه انجام می‌پذیرد. به عنوان مثال، پار بروز مصرفی PAR2 به یاد نسبت به آسیب مغزی. باعث کاهش حجم سکته می‌شود. این مطالعات نشان می‌دهد که زیرا این مطالعات به عنوان یک میژد مغزی باعث کاهش آسیب نورونی دیپامینرژیک و تکثیر آسانی در کشتهای نورونی و نواحی مختلف مغزی می‌شود و در مطالعات برون‌تنی انجام شده است. همچنین مهارکننده‌های اختصاصی PAR1 و PAR2 در بهبود گونه‌های ترومبین‌ها اخراج و پیشگیری از ایجاد میزان برای توقف سرطانی PAR ها که علم شده‌اند، هم‌عفونی PAR، مجموعی PAR، آسیب‌های بیشتر و وارد کردن CNS هما به راه انجام می‌پذیرد. به عنوان مثال، پار بروز مصرفی PAR2 به یاد نسبت به آسیب مغزی. باعث کاهش حجم سکته می‌شود. این مطالعات نشان می‌دهد که زیرا این مطالعات به عنوان یک میژد مغزی باعث کاهش آسیب نورونی دیپامینرژیک و تکثیر آسانی در کشتهای نورونی و نواحی مختلف مغزی می‌شود و در مطالعات برون‌تنی انجام شده است.

1. Pro tease nexin-1
2. Antithrombin 3
3. Blood brain barrier
4. Morphology
5. Neurodegenerative
6. N-Methyl-D-aspartate
7. Oxygen–glucose deprivation
8. Neuroprotective
Analysis of synaptic and plasticity changes in the brain shows that PAR2 hyperactivation and proinflammatory changes in the brain are associated with the development of Alzheimer's disease.

Monocyteid
Experimental autoimmune encephalomyelitis

PAR2 can be an inflammatory cell type in the brain that plays a role in the development of Alzheimer's disease.
توابع گیرنده‌های PAR1 و PAR2 در انسداد التهاب نروژنیک به‌روز می‌شوند. PAR1 بیماری‌های تخلیه بردن عصبی اهمیت دارد؛ بنابراین در مرحله آزمایش به‌کار بردن PAR1 در یک نمونه گیرنده‌ای بدونPAR2 مشابهی به نقش این گیرنده مشابه است. PAR2 به‌عنوان یک گیرنده‌ی بالا در استجابة به افزایش‌های فعالیت‌های پروتئازی در سیستم عصبی توسط سرین و اتصالات سایر پروتئازهای تولید شده در روند آسیب و نیروپپتیدهای آگونیست است. این گیرنده در پاسخ به تحریکات دما و در حالت اضطراب، ایجاد درد و خارش و نیز در اسکلت‌های آلوده و بیماری‌های التهابی و درد اشکار می‌شود.

33. Tanaka M, Yoneyama M, Shiba T, Yamaguchi
مقاله مروری
1397 د و ره ششم، شماره سوم، تابستان

