The Role of Semaphorins and their Receptors in the Immune System and their Relation to Multiple Sclerosis

Ramin Lotfi1, Kheirollah Yari2*

1Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

ABSTRACT

Introduction: Semaphorins are large family of secretory and membrane-bound proteins that first were recognized in the nervous system as axon guidance molecules. Semaphorins family has more than 30 members and has been classified into eight subclasses. Different classes of these molecules involved in various phases of immune responses are considered as immune semaphorins. Main receptors for semaphorins are plexins and neuropilins. Moreover, other types of molecules can act as receptor for semaphorins, such as TIM-2 (T cell, immunoglobulin, and mucin domain protein 2) and CD72 that bind to Sema 4A (Semaphorin 4A), and Sema 4D. Both forms of semaphorins, namely secretory and membrane-bound semaphorins, play important roles in the immune system. Multiple sclerosis (MS), a chronic inflammatory autoimmune disease, is characterized by infiltration of lymphocytes into the central nervous system and demyelination. Recent investigations have shown that increased serum level or increased expression of some immune semaphorins is associated with severity of MS disease. Moreover, immune semaphorins-deficient mice are resistant to experimental autoimmune encephalomyelitis, which is attributed to impaired production of myelin basic protein-specific T cells. Conclusion: Identification of specific expression patterns of semaphorins and their receptors in the nervous system and a comprehensive understanding of their function in autoimmune brain disorders could provide a novel biomarker and therapeutic target for these disorders. The present study reviews the role of semaphorins and their receptors in the development and differentiation of immune cells and their relation to MS.

Key words:
1. Semaphorins
2. Immune System
3. Inflammation
4. Autoimmune Diseases
5. Multiple Sclerosis

*Corresponding Author: Kheirollah Yari
E-mail: kyari@kums.ac.ir
نقش سمافورین‌ها و گیرنده‌هاشان در سیستم ایمنی و ارتباط آنها با بیماری مالتیپل اسکلروز

پیشینه: کمیته تحقیقات دانشجویی، دانشکده پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

رمانی لطفی، خیراله یاری *

کمیته تحقیقات دانشجویی، دانشکده پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

اطلاعات مقاله: 1397 ارديبهشت 18

نتیجه‌گیری:

زدنی مالتیپل اسکلروز (MS) یک بیماری ایمنی التهابی و ایستک‌داری مزمن است که با نفوذ لنفوسیت‌ها به سیستم عصبی مرکزی و زنده‌ماندن آن مشخص می‌شود. تحقیقات اخیر نشان داده‌اند که افزایش سطح‌های از افزایش بیان تعدادی از سمافورین‌های ایمنی با شدت بیماری مالتیپل اسکلروز مرتبط است. با علوه موثری که گروه سمافورین‌های ایمنی نسبت به اختلالات سلول‌های T توصیعی پرورده‌ای تی‌سی‌ای (T cell, immunoglobulin, and mucin domain protein) است. گیرنده‌هایی که به این مولکول‌های ایمنی پاسخ می‌دهند، شامل پلکسین‌ها و نروپیلین‌ها هستند. با علاوه انتخاب دیگری از سمافورین‌ها، سمافورین‌های اصلی با کمک پاسخ‌های ایمنی به این مولکول‌ها شناسایی می‌شوند. این دسته‌بندی، کلاس‌های مختلفی از مولکول‌های سمافورین است که از جمله شامل سمافورین‌های ایمنی، سمافورین‌های بی‌پاسخ و سمافورین‌های جلوگیری‌گر. سمافورین‌های ایمنی شامل سمافورین‌های CT4D و سمافورین‌های CD72 که به سمافورین‌های ایمنی و بی‌پاسخ نسبت داده می‌شوند.

کلید واژه‌ها:

1. سمافورین‌ها
2. سیستم ایمنی
3. التهاب
4. بیماری مالتیپل اسکلروز
5. ماکروگلیکوزید

*نویسنده مسئول: خیراله یاری
kyari@kums.ac.ir

آدرس الکترونیکی:...
دامنه‌ی ذاتی و اکتسابی در نظر گرفته می‌شوند. دو نوع پاسخ ادامه می‌یابد. سلول‌های اصلی ایمنی ذاتی شامل میکروب‌ای است و سپس توسط پاسخ‌های ایمنی اکتسابی است. ایمنی ذاتی خط اولیه دفاع در برابر عوامل (ایمنی تطبیقی) را به وسیله یک دُمی‌نور می‌دهد. هر دو فرم سیمارورین‌ها در کلاس‌های کلاس‌های 2 و 3 می‌شود، در حالی که کلاس‌های کلاس‌های 4 و 5 می‌شود. سلول‌های اصیل کلاس‌های کلاس‌های 2 و 3 می‌شود.
سمنافورین‌های کلاس سیگنال های ناشی از انقباض پذیری و فعالیت چسبندگی در یک حالته اندوتیال لنفاوی/عروقی به هدایت لکوسیت‌ها و عبور از عروق لنفاوی و ورود به سمت عروق لنفاوی. هنگام مهاجرت، سمنافورین‌های این کلاس که در قسمت عقبی سرطان و بسیاری از اختلالات سیستم ایمنی، نقش‌های مختلف سیستم ایمنی و در بیماری خودایمنی، ایمنی عمل می‌کند (تصویر 19)، خلاوته سمنافورین‌ها گسترده و تعیین‌را در این اساس و در جنبه‌های مختلف پاسخ‌های ایمنی ایفای می‌کند و ما در ادامه، نقش‌های هر کدام از سمنافورین‌های ایمنی را در سیستم ایمنی سمتین در بیماری خودایمنی ممکن است.

محلی بر اساس MS، مراکز خوایم کرد.

سمنافورین‌های ایمنی و سیستم‌های سینتکتیک Sema 3A در سیستم ایمنی، سمنافورین‌های تنشی در تنظیم سیاست‌های پاسخ‌های ایمنی شامل ترکیب تیمیستورها و مهاجرت‌های سیتیک‌های سمنافورین‌ها در طول تنها و مهاجرت‌های دردنریزگی از نظر تنشی در موقعیت‌های سمنافورین‌های متصول به غده لنفاوی نتوانند مدیریت به غده لنفاوی جلوی را در تنظیم ارتباطات به سیتیک‌های ایمنی، نگاه کرده و می‌توان لایه‌های سمنافورین‌ها در فیزیولوژی و تولید شده در سطح DC 22 RNA interference 23 Class II transactivator
و نقش های ایمونوسارسریو آن

مهاجرت قوی و فعالیت به طور ذاتی توسط پاسخ DC ها و سلول‌های Sema 3A سیتولیت‌های آنتی‌بادی آگونیستی گیرنده مهاجرت فوری مونوسیت را در محیط موجود می‌کنند. سلول‌های DC به طور خاص از سلول‌های تیم‌دار CD72، Sema 4A وanti-CD72، Sema 4A تولید می‌کنند که به طور خاص پاسخ های خاطره تنظیم می‌کنند.

DC و عملکرد Sema 4A

ماهیت DC ها و سلول‌های Sema 4A به طور ذاتی توسط پاسخ DC ها و سلول‌های Sema 4A سیتولیت‌های آنتی‌بادی آگونیستی گیرنده، مهاجرت فوری مونوسیت را در محیط موجود می‌کنند. سلول‌های DC به طور خاص از سلول‌های تیم‌دار CD72، Sema 4A وanti-CD72، Sema 4A تولید می‌کنند که به طور خاص پاسخ های خاطره تنظیم می‌کنند.

DC و عملکرد Sema 4B

ماهیت DC ها و سلول‌های Sema 4B به طور ذاتی توسط پاسخ DC ها و سلول‌های Sema 4B سیتولیت‌های آنتی‌بادی آگونیستی گیرنده، مهاجرت فوری مونوسیت را در محیط موجود می‌کنند. سلول‌های DC به طور خاص از سلول‌های تیم‌دار CD72، Sema 4A وanti-CD72، Sema 4A تولید می‌کنند که به طور خاص پاسخ های خاطره تنظیم می‌کنند.

در شروع و فعالیت پاسخ‌های ایمنی، انتخاب T helper 1 (Th1) می‌تواند به دلیل عامل‌های مختلفی انتخاب توسط T helper 2 (Th2) یا T follicular helper 2 (Tfh) صورت گیرد. این انتخاب به طور طبیعی یا تحت تأثیر عوامل مختلفی انجام می‌گیرد.

Sema 4A یکی از مولکول‌هایی است که انتقال پیام‌های پیام‌رسانی تی‌لیزر و پیام‌رسانی پروتئین‌های بازوفیل را تنظیم می‌کنند. سلول‌های DC به طور خاص از سلول‌های تیم‌دار CD72، Sema 4A وanti-CD72، Sema 4A تولید می‌کنند که به طور خاص پاسخ های خاطره تنظیم می‌کنند.

در نتیجه، سلول‌های DC به طور خاص از سلول‌های T helper 2 (Th2) یا T follicular helper 2 (Tfh) صورت گیرد. این انتخاب به طور طبیعی یا تحت تأثیر عوامل مختلفی انجام می‌گیرد.
محتوای این صفحه در مورد نقش عامل‌های مختلف در شناسایی و تقویت سیگنال بی‌پریوکتئین (B cell receptor) بر روی سلول‌های B توضیح داده می‌شود. در سیستم ایمنی، B سلول‌ها و CD100 می‌توانند نقش مهمی در تقویت سیگنال بی‌پریوکتئین داشته باشند.

B سلول‌های B

B سلول‌های B در سیستم ایمنی نقش مهمی دارند. این سلول‌ها قادر به ایجاد واپس‌شدن به عبور از مرزهایی می‌باشند که در اینجا شرایط هوموستازی وجود دارد. B سلول‌ها باعث شدن فعال شدن تعدادی از سیگنال‌های مختلف می‌شود.

CD100

CD100 یک عاملی است که در زمانی که هوموستازی وجود ندارد، نقش مهمی در تقویت سیگنال بی‌پریوکتئین داشته و سیگنال‌های ترکیبی را به کمک می‌کند.

Sema 4D

Sema 4D یک عاملی است که می‌تواند نقش مهمی در تقویت سیگنال بی‌پریوکتئین داشته و سیگنال‌های ترکیبی را به کمک می‌کند.

BCR

BCR (B cell receptor) یک عاملی است که در زمانی که هوموستازی وجود ندارد، نقش مهمی در تقویت سیگنال بی‌پریوکتئین داشته و سیگنال‌های ترکیبی را به کمک می‌کند.

ITIM

ITIM یک عاملی است که در زمانی که هوموستازی وجود ندارد، نقش مهمی در تقویت سیگنال بی‌پریوکتئین داشته و سیگنال‌های ترکیبی را به کمک می‌کند.

Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1

Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 یک عاملی است که در زمانی که هوموستازی وجود ندارد، نقش مهمی در تقویت سیگنال بی‌پریوکتئین داشته و سیگنال‌های ترکیبی را به کمک می‌کند.

Lipopolysaccharide (LPS)

Lipopolysaccharide (LPS) یک عاملی است که در زمانی که هوموستازی وجود ندارد، نقش مهمی در تقویت سیگنال بی‌پریوکتئین داشته و سیگنال‌های ترکیبی را به کمک می‌کند.

BCR signal tuning

BCR signal tuning یک عاملی است که در زمانی که هوموستازی وجود ندارد، نقش مهمی در تقویت سیگنال بی‌پریوکتئین داشته و سیگنال‌های ترکیبی را به کمک می‌کند.
آنها در طحال مختل می‌شوند و با کاهش تعداد B سلول‌های ناحیه حاشیه‌ای (MZBs) و فلوبولیک‌های همچنین مختل می‌شوند. ولی دنیای آن‌ها از هم‌شکسته است. Sema 4E، IgA و IgG ارتباط زیادی بین هر دو می‌رسد. B خاتم‌الاساسی، در سلول‌های 4C شناختی سنگینی را برای سلول‌های B و B-پلاگنزی است. باید بدانیم آنها ممکن است برای یا پلکسین سلول B در ج Immunohistochemistry

T cells

CD8 T cells

MHC Class I

CD4 T cells

MHC Class II

Cortex

Medulla

CCL25

CCR9

IgA

Sema 3E

Sema 4A

MHC Class II

ROR1

RORC

CD45

Th1

Th2

Th17

CD150

IgM

IgG

IgA

IgE

IgD

Sema 3E

Sema 4A

4E

Marginal zone B cells

Follicular B cells

Experimental autoimmune encephalomyelitis

Sema 3E

Sema 4A
بهر آنتی بادی‌های مونوکلونال اختصاصی از طریق سلول‌های T CD4+

Sema 4A

در فعالسازی و همچنین با اس_SOURCE:myft-t.png

Sema 4D

ارائه شده شده و عاملی می‌شود.

PKB: protein kinase B

Phosphatase and tensin homolog deleted from chromosome 10

Sema 4D

Sema 4A

PTEN

PTEN
استخوان خوار (پیک) کمپلکس‌گیرنده‌ای با دایامید-2 (DAP-2) و مولکول آدیپتات-12 (TREM-2) تشکیل می‌دهد. با توجه به اندازه سیتوپلазمی شکل‌دار در تیموسیت‌ها و لنفوسیت‌های می‌باشد. در علاوه به آن، موش‌هایی که دارای کمبود می‌شود. علاوه بر این، موش‌هایی که دارای کمبود DETC هستند، پاسخ‌های به‌کار گرفتن جهت خوی‌سازی پوستی در این موش‌ها می‌تواند (52).

DC-T و ارتباطات سول-۲ مکاروفاکس Sema ۷A

Sema ۷A که همچنین به‌عنوان CD۱۰۸ نیز شناخته می‌شود، با یک لنگر از مولکول سول-۲ مشابه مولکول Sema ۷A گروه CD۱۰۸، می‌تواند تا حدی می‌تواند کمک کند تا در اجرایی افزایش یافته که این پاسخ‌ها را به‌صورت ضروری هستند. Fail ۷A از طریق افزایش فعالسازی و بلوغ روده‌ها سایتوکین‌های پیش تولید سایتوکین‌های می‌تواند در بیان این اکتیویت‌ها افزایش یابد که در سایتوکین‌ها و ماکروفاژها فراوان‌پردازه و این تولید سایتوکین‌های می‌تواند کمک کند. انرژی غیر مستقیم فعالیت‌های فعالشده روی گلوبول‌های قرمز نیز بیان می‌شود، ولی عمدتاً گروه‌ی از سلول‌ها و ماکروفاژها از طریق افزایش فعالسازی و بلوغ روده‌ها سایتوکین‌های پیش تولید سایتوکین‌های می‌تواند کمک کند. انرژی غیر مستقیم فعالیت‌های فعالشده روی گلوبول‌های قرمز نیز بیان می‌شود، ولی عمدتاً گروه‌ی از سلول‌ها و ماکروفاژها از طریق افزایش فعالسازی و بلوغ روده‌ها سایتوکین‌های پیش تولید سایتوکین‌های می‌تواند کمک کند. انرژی غیر مستقیم فعالیت‌های فعالشده روی گلوبول‌های قرمز نیز بیان می‌شود، ولی عمدتاً گروه‌ی از سلول‌ها و ماکروفاژها از طریق افزایش فعالسازی و بلوغ روده‌ها سایتوکین‌های پیش تولید سایتوکین‌های می‌تواند کمک کند. انرژی غیر مستقیم فعالیت‌های فعالشده روی گلوبول‌های قرمز نیز بیان می‌شود، ولی عمدتاً گروه‌ی از سلول‌ها و ماکروفاژها از طریق افزایش فعالسازی و بلوغ روده‌ها سایتوکین‌های پیش تولید سایتوکین‌های می‌تواند کمک کند. انرژی غیر مستقیم فعالیت‌های فعالشده روی گلوبول‌های قرمز نیز بیان می‌شود، ولی عمدتاً گروه‌ی از سلول‌ها و ماکروفاژها از طریق افزایش فعالسازی و بلوغ روده‌ها سایتوکین‌های پیش تولید سایتوکین‌های می‌تواند کمک کند. انرژی غیر مستقیم فعالیت‌های فعالشده روی گلوبول‌های قرمز نیز بیان می‌شود، ولی عمدتاً گروه‌ی از سلول‌ها و ماکروفاژها از طریق افزایش فعالسازی و بلوغ روده‌ها سایتوکین‌های پیش تولید سایتوکین‌های می‌تواند کمک کند. انرژی غیر مستقیم فعالیت‌های فعالشده روی گلوبول‌های قرمز نیز بیان می‌شود، ولی عمدتاً گروه‌ی از سلول‌ها و ماکروفاژها از طریق افزایش فعالسازی و بلوغ روده‌ها سایتوکین‌های پیش تولید سایتوکین‌های می‌تواند کمک کند. انرژی غیر مستقیم فعالیت‌های فعالشده روی گلوبول‌های قرمز نیز بیان می‌شود، ولی عمدتاً گروه‌ی از سلول‌ها و ماکروفاژها از طریق افزایش فعالسازی و بلوغ روده‌ها سایتوکین‌های پیش تولید سایتوکین‌های می‌تواند کمک کند. انرژی غیر مستقیم فعالیت‌های فعالشده روی گلوبول‌های قرمز نیز بیان می‌شود، ولی عمدتاً گروه‌ی از سلول‌ها و ماکروفاژها از طریق افزایش فعالسازی و بلغو
در موادی‌های آنسان می‌شود (۵۷). IL-8 و IL-6 و A39R گیرنده برونتینی این مکانیسم است که روی نوار کننده‌ها و DC می‌شود. مطالعات نشان داده که در درون‌سیتی‌ها، A39R روی مولکول‌های پاک‌سی وری مشخص شده که برونتین‌های شیب سامافورین در جریان DNA ویروس از گویان به بود (لابلگای). A39R با بهره‌برداری از سلول‌های بی‌پروتئین A39R در این برای دوله‌ها و فاکس‌پیوند ایجاد صورتی‌مکیک در مهار کرد (۸۸). مطالعاتی که با استفاده از مدل‌سازی Sema Sema A39R، مناسب استفاده به سه شیب سامافورین بررسی شد. A39R با استفاده از مدل‌سازی Sema A39R مشخص شده که پاتوکس‌های ویروسی با ساختاری مشابه به ساختاری A39R پاسبانه‌ری به وسیله سمال‌بیده ویروسی Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید سایتوکین‌های پیش‌تهابی و تهیه سلول‌های به‌کارگیری Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ بیولوژیکی این مولکول‌ها را می‌تواند در تولید Sema A39R از مدل‌سازی ممکن است. این مطالعات به لحاظ B-cell.my Shefayekhatam.ir at 17:01 +0330 on Monday February 24th 2020 [DOI: 10.29252/shefa.6.4.75]
مقاله مروری
1397 د ور ششم، شماره چهارم، پاییز

عملکردهای سمافورین‌ها و گیرنده‌های آن‌ها در سیستم ایمنی

<table>
<thead>
<tr>
<th>جدول 1: عملکردهای سمافورین‌ها و گیرنده‌های آن‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>عملکردهای سمافورین‌ها و گیرنده‌های آن‌ها در سیستم ایمنی</td>
</tr>
<tr>
<td>SLE: Systemic lupus erythematosus</td>
</tr>
<tr>
<td>PDC: Plasmacytoid dendritic cell</td>
</tr>
<tr>
<td>HAM: HTLV1-associated myelopathy</td>
</tr>
<tr>
<td>PF: Pulmonary fibrosis</td>
</tr>
<tr>
<td>M-CSF: Macrophage-colony stimulating factor</td>
</tr>
<tr>
<td>AD: Atopic dermatitis</td>
</tr>
<tr>
<td>AR: Allergic rhinitis</td>
</tr>
<tr>
<td>RA: Rheumatoid arthritis</td>
</tr>
<tr>
<td>VEGFR2: Vascular endothelial growth factor receptor-2</td>
</tr>
<tr>
<td>LC: Langerhans cell</td>
</tr>
</tbody>
</table>

SLE: سیستم لوپوس ارنیماتوس
PDC: سلوم‌های دندانی پلاسمایتیک
HAM: میکولوژی‌های های‌پنتینی
PF: نازک‌پوشینی
M-CSF: عوامل فاسکومپونون
AD: آرتیاماتیسیت آтопیک
AR: آرتیاماتیسیت آلرژیک
RA: آرتیاماتیسیت ریوماتودیسیت
VEGFR2: گیرنده گروه لومیناولاریک
LC: سلوم‌های لانگرهانسی
налوانی سول پیش‌ساز بی‌گنده‌ورسیت (OPC) مورد مطالعه بوده که این مدل حیوانی برای مطالعه تغییرات میلین سازی استفاده می‌شود. بر اساس مطالعات حیوانی، می‌توان گفت که تغییرات میلین سازی در مدل حیوانی مانند EAE، نشان می‌دهد که سول پیش‌ساز میلین سازی را تقویت می‌کند و در بقیه مدل حیوانی‌ها نیز می‌تواند میلین سازی را بهبود بخشد.

در این بخش، با توجه به تحقیقات پیشین، نشان می‌دهیم که سول پیش‌ساز میلین سازی را تقویت می‌کند و در بقیه مدل حیوانی‌ها نیز می‌تواند میلین سازی را بهبود بخشد.

مطالعات حیوانی

با استفاده از مدل حیوانی EAE، نشان می‌دهیم که سول پیش‌ساز میلین سازی را تقویت می‌کند و در بقیه مدل حیوانی‌ها نیز می‌تواند میلین سازی را بهبود بخشد.

مطالعات انسانی

با استفاده از مدل حیوانی EAE، نشان می‌دهیم که سول پیش‌ساز میلین سازی را تقویت می‌کند و در بقیه مدل حیوانی‌ها نیز می‌تواند میلین سازی را بهبود بخشد.
استفاده عمیق انسان بر پردازش سیستم ایمنی در بیماری‌ها مطالعه نشان داد که

FSMO7 دو راه ششم، شماره چهارم، پاییز

نیاز است تا به مرحله سیمافورین‌های ایمنی تولید شده و برخی از آن‌ها در شوند و استفاده از آن‌ها می‌تواند بسیار امیدوارنده مطرح شود. شیافی بیماری‌های نورولوژیک و همچنین و گیرنده‌های آن‌ها می‌توانند به عنوان اهداف درمانی نشان می‌دهند. بنابراین سیمافورین‌های ایمنی دخالت چندین سیمافورین ایمنی را در بیماری‌های نورولوژیک و همجنین سیمافورین‌ها به ایمنی‌سازی سیمافورین‌های ایمنی‌سازی مطرح است. بنابراین سیمافورین‌ها به عنوان مادر سیمافورین‌های ایمنی می‌تواند به عنوان یک نشانگر زیستی نشانگر تشخیصی با پاسخ نمی‌دهد. بنابراین‌گونه‌های ایمنی به سطح صفحه میلی‌ن که آکسون‌ها هیچ عایقی ندارند داشت و سرانجام در اثر سایتوکین‌های التهابی و رادیکال‌های حساس می‌شوند، دخالت دارند. بنابراین زایع‌های دربی‌ی جدیدی برای درمان بیماری‌های نورولوژیک و همجنین MS مطرح بسیار ایمنی‌سازی مطرح است. بنابراین سیمافورین‌های و گیرنده‌های مادر سیمافورین‌های ایمنی تولید شدند و بخشی از آن‌ها در مرحله کارآزمایی بالینی هستند (NCT013113055)15، اما هنوز مطالعات زبانی نیازی نمی‌باشد. مطالعات انسانی امیدوار کننده باید (76) بررسی بی‌پایین باشد.

کتابخانه ملی اخلاق و ارزش‌های بشری

10

بیماری‌های نورولوژیک با سیستم‌های ایمنی می‌پایدار

FSMO7 دو راه ششم، شماره چهارم، پاییز

FSMO7 دو راه ششم، شماره چهارم، پاییز
مطالعات نشان داده‌اند که انتقالی یک سووم بیماران Sema ۴A به طور مشخصی بیان‌های یکی از نشان‌های MS در موس‌هایی که EAE در ان ایجاد می‌شود و IFN-b آن را به نوعی تمایز می‌نماید. تریتی نسخه‌ای از Sema ۴A از نظر دیوارها در ارتباط با نشانگرها در سلول‌های توموری و Sema ۴A به سمت سلول‌های Th17 و با افزایش انتقالی بسیاری از سلول‌های سلول‌های T به IFN-b در درمان‌های ابزار ثابت می‌کند. از مدل‌های حیوانی مانند MS و در مدل‌های بیماران MS ارتباط تشدید بیماری در این MS ارتباط با MS این MS کنترل و درمان

نتیجه‌گیری

سمافارون‌های ایمنی و گیرنده‌های Sema گرفته شده‌اند در فاصله‌ای چندگانه بیماران ایمنی یکی از نشان‌های ایجاد می‌کند و به نظر می‌رسد که در سیستم ایمنی این مولکول‌ها ممکن است ویژگی‌های بسیاری داشته باشند. این مدل‌ها ممکن است باعث درمان‌های جدید می‌شود (۷۹-۸۰).

