An Overview of the Effects of Melatonin on Nervous System Diseases

Zaynab Khalili1, Parastoo Barati Dowom2, Marzieh Darvishi1*, Khadijeh Abdal3

1Department of Anatomical Sciences, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
2Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
3Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran

ABSTRACT

Introduction: Melatonin is a hormone secreted from the pineal gland and plays an important role in regulating the brain functions. This hormone with antioxidant activity supports the body against internal and external damaging factors. Melatonin reduces the production of free radicals by preserving mitochondrial homeostasis, and contributes to ATP synthesis in mitochondria. Reduction of melatonin by aging is one of the hypotheses suggested to be implicated in increase of the incidence of neurological disorders. Various factors play a role in the regulation and production of the melatonin. This hormone can act as a neuroprotective agent for some neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, depression, and migraine. Conclusion: According to the positive effects on the nervous system, non-toxic properties following long-term application, and the absence of side effects, melatonin can be a suitable compound for treatment of some neurological disease.

Key words:
1. Melatonin
2 Depression
3. Nervous System Diseases

*Corresponding Author: Marzieh Darvishi
E-mail: Marzidarvish@yahoo.com
مروری بر تأثیر ملاتونین بر بیماری‌های سیستم عصبی

زینب خلیلی، پرستو براتی دوم، مریم درویش، خدیجه ابدال، مرضیه درویش
گروه علوم تشريح، دانشکده علوم پزشکی، دانشگاه علوم پزشکی ایلام، ایران
گروه پاتولوژی دهان، فک و صورت، دانشکده دندانپزشکی، دانشگاه علوم پزشکی ایلام، ایران

اطلاعات مقاله

*بازخوان و مسئول:
Marzidarvish@yahoo.com

چکیده

مقدمه: ملاتونین هورمونی است که از غده پینه آل ترشح شده و نقش مهمی در تنظیم عملکرد‌های مغز ایفا می‌کند. این هورمون با فعالیت آنتی اکسیدانی موجب حمایت بدن در برابر عوامل آسیب‌رسان داخلی و خارجی می‌گردد. ملاتونین با حفظ هوموستاتی میتوکندری تولید رادیکال‌های آزاد را کاهش می‌دهد و به سندرم ATP به سنتز مانند ملایمی در کاهش می‌کند. کاهش ملاتونین با افزایش سن یکی از عواملهای افزایش شده در زمینه توده از دیدگاه بروز اختلالات عصبی است. عوامل مختلف در تنظیم و تولید ملاتونین نقش دارند. این هورمون به عنوان یک عامل محافظتی عصبی در برابر بروز اختلالات عصبی از قبیل بیماری آسیب‌رسان، بیماری پARKینسون، افسردگی و میگرن عمل می‌کند. این درک‌ها با توجه به اثرات مثبت بر سیستم عصبی، خواص غیر سمی پس از مصرف طولانی‌مدت و نبود عوارض جانبی، ملاتونین می‌تواند یک ترکیب مناسب برای درمان بیماری‌های عصبی باشد.

کلید واژه‌ها:
1. ملاتونین
2. افسردگی
3. بیماری‌های سیستم عصبی

نتیجه‌گیری:

در بیماری‌های آلزایمر، بیماری پARKینسون، افسردگی و میگرن مراتب مثبت بر سیستم عصبی و خواص ناخواسته پس از مصرف طولانی‌مدت و نبود عوارض جانبی، ملاتونین می‌تواند یک ترکیب مناسب برای درمان بیماری‌های عصبی باشد.

نوبستنده مسئول: مریم درویش

آدرس الکترونیکی:
Marzidarvish@yahoo.com
منتشر می‌شود.

ملاتونین یکی از هورمون‌های طبیعی بدن می‌باشد که از غده پینه آل ترشح می‌شود. در سال‌های اخیر این هورمون به صورت گسترده استفاده شده است. ملاتونین به راحتی از سد خونی مغز می‌گردد و در ارای عوارض جانبی اندکی باشد. (17) مطالعات نشان داده است که ملاده ده سال ابتدا هورمون در بیماران تعلیب کننده سیستم ایمنی مانند پارکینسون (PD) هموگلوبین، اسپری، نیوری، اسپری، می‌گردد. (18) بررسی‌های دیگری نیز نشان داده است که ملاده ده سال ابتدا هورمون می‌گردد و اثر اسید ضد سرطانی را دارا است. دو نمونه از متابولیت‌های مهم ملاته‌ر

6:3. الکلی از حفظ سیستم ایمنی اهمیت دارد و ممکن است اقدامات ضد سرطانی را نیز داشته باشد. دو نمونه از متابولیت‌های مهم ملاته‌ر

1398
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

ملاته‌ر

(1) گردش کرده و ممکن است اسید ضد سرطانی را نیز داشته باشد.

atelos (12) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملاته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی نیز داشته باشد. (11) ملته‌ر یکی از اکسیدان‌های قوی بر عهده دارد و ممکن است اقدامات ضد سرطانی N1-Acetyl-N2-formyl-5-methoxykinuramine (11) در سال‌های اخیر از این هورمون به صورت گسترده استفاده شده است. ملاته‌ر به راحتی از سد خونی مغز می‌گردد و در ارای عوارض جانبی اندکی باشد. (17) مطالعات نشان داده است که ملاده ده سال ابتدا هورمون در بیماران تعلیب

melatonin

1. Parkinson’s disease
2. Alzheimer’s disease
3. Insomnia
4. Epilepsy
5. Suprachiasmatic nucleus
6. Serotonin N-acetyltransferase-Ase
7. Arylalkylamine N-acetylserotonin
8. Hydroxyindole O-methyltransferase
9. Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1)
10. Cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1)
11. N1-Acetyl-N2-formyl-5-methoxykinuramine
12. N1-acetyl-5-methoxykinuramine

[DOI: 10.29252/shefa.7.3.61]

0x297c7b613f87-e030 on Sunday June 14th 2020
علاوه بر این، فسفرولاتيون MAPK (ERK1/2) نیز بر یک فورچه مسیر در بروز آپوپتوز سلول می‌شود. کناره‌گیری از این مدارها ممکن است با اتصال مسیرهای پروتئین متصل به ملاتونین می‌باشد، از جمله NF-kB و Akt.

آپوپتوز سلول می‌شود، از طریق تبادل انسداد در هریک از سلول‌ها به‌طور میدانی است که در جدیدینی، دی‌پروتئین‌ها به‌طور میدانی قرار می‌گیرند. این دی‌پروتئین‌ها باعث آپوپتوز سلول می‌شود. در این فرآیند، NF-kB به عنوان مادر سیگنال‌های فیزیولوژیک محور می‌شود. در این مسیر، NF-kB به عنوان یک کننده نقش مهمی در پاسخ‌های جسمانی دارد.

علاوه بر این، فسفرولاتيون MAPK (ERK1/2) نیز بر یک فورچه مسیر در بروز آپوپتوز سلول می‌شود. کناره‌گیری از این مدارها ممکن است با اتصال مسیرهای پروتئین متصل به ملاتونین می‌باشد، از جمله NF-kB و Akt.

آپوپتوز سلول می‌شود، از طریق تبادل انسداد در هریک از سلول‌ها به‌طور میدانی است که در جدیدینی، دی‌پروتئین‌ها به‌طور میدانی قرار می‌گیرند. این دی‌پروتئین‌ها باعث آپوپتوز سلول می‌شود. در این فرآیند، NF-kB به عنوان مادر سیگنال‌های فیزیولوژیک محور می‌شود. در این مسیر، NF-kB به عنوان یک کننده نقش مهمی در پاسخ‌های جسمانی دارد.

علاوه بر این، فسفرولاتيون MAPK (ERK1/2) نیز بر یک فورچه مسیر در بروز آپوپتوز سلول می‌شود. کناره‌گیری از این مدارها ممکن است با اتصال مسیرهای پروتئین متصل به ملاتونین می‌باشد، از جمله NF-kB و Akt.

آپوپتوز سلول می‌شود، از طریق تبادل انسداد در هریک از سلول‌ها به‌طور میدانی است که در جدیدینی، دی‌پروتئین‌ها به‌طور میدانی قرار می‌گیرند. این دی‌پروتئین‌ها باعث آپوپتوز سلول می‌شود. در این فرآیند، NF-kB به عنوان مادر سیگنال‌های فیزیولوژیک محور می‌شود. در این مسیر، NF-kB به عنوان یک کننده نقش مهمی در پاسخ‌های جسمانی دارد.

علاوه بر این، فسفرولاتيون MAPK (ERK1/2) نیز بر یک فورچه مسیر در بروز آپوپتوز سلول می‌شود. کناره‌گیری از این مدارها ممکن است با اتصال مسیرهای پروتئین متصل به ملاتونین می‌باشد، از جمله NF-kB و Akt.

آپوپتوز سلول می‌شود، از طریق تبادل انسداد در هریک از سلول‌ها به‌طور میدانی است که در جدیدینی، دی‌پروتئین‌ها به‌طور میدانی قرار می‌گیرند. این دی‌پروتئین‌ها باعث آپوپتوز سلول می‌شود. در این فرآیند، NF-kB به عنوان مادر سیگنال‌های فیزیولوژیک محور می‌شود. در این مسیر، NF-kB به عنوان یک کننده نقش مهمی در پاسخ‌های جسمانی دارد.
در مونوسیتوها نشان داده شده است، با این وجود تحقیقی انجام شده است که نشان داده که مالاتونین در مونوسیتوها، با تغییرات در سطح عصبی و در پی میتوکاندری، نقش محافظتی عصبی داشته است. مالاتونین می‌تواند فعالیت ضد آنتی‌اکسیدانی در موارد مزاحم‌تر از گلوتاتیون بگیرد و در جلوگیری از حملات رادیکال آزاد مانند تریل اکسید و سلولی برای جلوگیری از خسارت قلی بکر، بهبود عملکرد هوموشتوژس میتوکاندری در تنفس سلولی است. در مطالعات متنوعی نشان داده شده که مالاتونین در پیروی و از پراکسیداسیون چربی و سلولی می‌گردد. این هورمون به طور ثانویه موجب جلوگیری برای بیشتر از گلوتاتیون اثر ضد آنتی‌اکسیدانی دارد. خرید غیر اشباع، لپید، آسیاهای آمینه و فاکتورهای اصلی و نیز همچنین می‌تواند منجر به ایجاد هموسیتوژس میتوکاندری در آن در جواب این سوال باشد. مالاتونین به عنوان یکی از حالت‌های آنتی‌اکسیدانی مسالیف در تمامی بیماری‌های آلزایمر و پارکینسون مطالعات متنوعی نشان داده که مالاتونین اثر مهاری ضد التهابی است که یکی از عملکردهای آن در سیستم عصبی مرکزی مؤثر بوده است. مالاتونین دارای اثر ضد التهابی است که از منکسرهای این در این مقاله به نام‌های IL-6، IL-2، IL-1b، TNFα E2 و PGE2 مورد بحث قرار گرفته است. در مطالعات دیگر این هورمون می‌تواند به صورت خونریزی و باعث تولید تریل اکسید در سلول‌ها و پتروتی در بافت‌های سیستم ایمنی می‌گردد. مالاتونین در میکروفازها و اسید های ضروری و اجتناب در موارد زنده با متابولیسم هوازی، اکسیدز مولکولی به آب تبدیل می‌شود که باید فیبرونی ضروری و اجتناب ناپذیر است. از میکوندری که منبع آنتی‌اکسیدان‌های

22 Tumor necrosis factor alpha
23 Prostaglandin E2
24 Signaling
25 Reactive oxygen species
26 ONOO-
تأثیر ملاتونین در بیماری‌های تغییر بندی
سیستم عصبی

صرف

استفاده از دور پایین ملاتونین‌های به عنوان بیماری صحرای مگزه. ملاتونین موجب کاهش بهبود نشان و بهبود روابط الکتروانفولکوگرافی (EEG) می‌گردد. این در حالت است که دور پایان ملاتونین در موش مهار با نقص حافظه طولی تبدیل می‌شود. هنگامی استفاده از دور بیایل ملاتونین در موش به مدت 800 میلی گرم کیلوگرم در موش باعث ایجاد تغییرات ناحیه انفراکتیوس یا مرگ می‌شود. می‌تواند بسیاری از شایع‌ترین افزایش حجم انفراکتیوس در بیماری‌های تغییر بندی ملایم به‌طور می‌تواند مراکز می‌تواند با کاهش حجم انفراکتیوس یا مرگ می‌شود.

۲۸ N-methyl-d-aspartate

۲۹ Depression

۲۶ Stroke

۲۵ Nitric oxide synthases
شامل پلاک آمیلود که می‌تواند موجب افزایش سطح ملانیون در آلزایمر شود. نمونه‌ای از این انتی‌اکسیدان‌ها ملانوتنی‌ن است که می‌تواند حتی زمانی که افزایش E4 تولید فیبرول‌ها تحت تأثیر آپوپتوسین (54، 55) یافت‌شود کاهش‌می‌دهد. سرمی ملانوتنی در آلزایمر مبتلا بیماران در کاهش نخاعی و خون‌مایع در روزانه ترشح و کاهش سیگنال‌های تهوع، درد، سر خوابی و درد، سریر خون‌ریزی می‌یابد. برخی از این مکانیسم‌ها از علت آسیب مغزی این بیماری پیشنهاد می‌کنند. انتی‌اکسیدان‌ها مانند می‌توانند تناوب‌های اپوپتوسیون در مدل‌های بایزی بازی می‌کنند. بررسی‌ها نشان‌دهنده‌ها می‌کنند که ملانوتنی در کاهش ادم مغزی و بازسازی BBB نقش مهمی در مدل‌های آلزایمر و پارکینسون دومین اختلال نورولوژیک سعی‌مانده است. مشخصه اصلی آن از دست دادن تدریجی عملکرد شناختی، حافظه و سایر تظاهرات رفتاری می‌باشد. علی‌رغم مطالعات تحقیق شده، هنوز نشان‌دهنده‌ای این بیماری در مصرف کاهش پیشنهاد نموده نشده است. بسیاری از مکانیسم‌ها مانند عوامل زنده می‌باشند که انتها بیماری آلزایمر با آزاد شدن سایتکین و استرس اکسیداتیوها به عوامل علائمی این بیماری می‌پیوند.

جدول 1 - خلاصه از مسيرهای مهار کنندة مرگ سلولی در آلزایمر.

<table>
<thead>
<tr>
<th>مسارها ی پیش‌بینیسای</th>
<th>مهارکنندة مرگ سلولی</th>
<th>آلزایمر</th>
<th>ملانوتنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCN</td>
<td>کاهش رشد نوری</td>
<td>C</td>
<td>پارکینسون</td>
</tr>
<tr>
<td>PCN</td>
<td>اثر محدودیت عصبی از سلول‌های عصبی فهي</td>
<td>AIF</td>
<td></td>
</tr>
<tr>
<td>PSN</td>
<td>در اینچیتیا</td>
<td>miPTP</td>
<td></td>
</tr>
<tr>
<td>PCN</td>
<td>اثر محدودیت عصبی از سلول‌های عصبی فهي</td>
<td>PARP</td>
<td></td>
</tr>
<tr>
<td>PCN</td>
<td>کاهش نکستکس از DNA و انجمننده‌ای از سلول‌های عصبی</td>
<td>DNA</td>
<td></td>
</tr>
<tr>
<td>PCN</td>
<td>اثر محدودیت عصبی از سلول‌های عصبی فهي</td>
<td>IL-1β</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 - خلاصه از مسيرهای مهار کنندة مرگ سلولی در آلزایمر.

<table>
<thead>
<tr>
<th>مسارها ی پیش‌بینیسای</th>
<th>مهارکنندة مرگ سلولی</th>
<th>آلزایمر</th>
<th>ملانوتنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCN</td>
<td>کاهش رشد نوری</td>
<td>C</td>
<td>پارکینسون</td>
</tr>
<tr>
<td>PCN</td>
<td>اثر محدودیت عصبی از سلول‌های عصبی فهي</td>
<td>AIF</td>
<td></td>
</tr>
<tr>
<td>PSN</td>
<td>در اینچیتیا</td>
<td>miPTP</td>
<td></td>
</tr>
<tr>
<td>PCN</td>
<td>اثر محدودیت عصبی از سلول‌های عصبی فهي</td>
<td>PARP</td>
<td></td>
</tr>
<tr>
<td>PCN</td>
<td>کاهش نکستکس از DNA و انجمننده‌ای از سلول‌های عصبی</td>
<td>DNA</td>
<td></td>
</tr>
<tr>
<td>PCN</td>
<td>اثر محدودیت عصبی از سلول‌های عصبی فهي</td>
<td>IL-1β</td>
<td></td>
</tr>
</tbody>
</table>

33 Blood-brain barrier
منجر به کاهش مجموعه اینک

طرح مسیری دوپامینرژیک در ماده سیاه و استریاتوم می‌گردد.

اثرات سایر داروها مانند 1-متیل-4-فنیل-1,2,3,6 تترایدهودورپیریدین (MPTP) با ایجاد مدل PD در موش صحرا، استفاده می‌کند و نشان‌دهنده است که ملاطونین می‌تواند با پراکسیدازیون در استریاتوم، هیپوکامپ و مغز میانی مقابله کند. علاوه بر آن گروه دیگری از دانشمندان نشان‌دهنده که وقتی ملاطونین به مهار قسمتی از تولید و ترسیم را کاهش می‌دهد. ملاطونین همچنین سطح آنزیم‌های ضد اکسیدانی نیز افزایش می‌دهد. علاوه بر این، ملاطونین موجب توقف در فعالیت کاسپاز که نشان‌دهنده است که ملاطونین می‌تواند با پراکسیدازیون در استریاتوم، هیپوکامپ و مغز میانی مقابله کند. علاوه بر آن گروه دیگری از دانشمندان نشان‌دهنده که وقتی ملاطونین به مهار قسمتی از تولید و ترسیم را کاهش می‌دهد. ملاطونین همچنین سطح آنزیم‌های ضد اکسیدانی نیز افزایش می‌دهد. علاوه بر این، ملاطونین موجب توقف در فعالیت کاسپاز که نشان‌دهنده است که ملاطونین می‌تواند با پراکسیدازیون در استریاتوم، هیپوکامپ و مغز میانی مقابله کند. علاوه بر آن گروه دیگری از دانشمندان نشان‌دهنده که وقتی ملاطونین به مهار قسمتی از تولید و ترسیم را کاهش می‌دهد. ملاطونین همچنین سطح آنزیم‌های ضد اکسیدانی نیز افزایش می‌دهد. علاوه بر این، ملاطونین موجب توقف در فعالیت کاسپاز که نشان‌دهنده است که ملاطونین می‌تواند با پراکسیدازیون در استریاتوم، هیپوکامپ و مغز میانی مقابله کند. علاوه بر آن گروه دیگری از دانشمندان نشان‌دهنده که وقتی ملاطونین به مهار قسمتی از تولید و ترسیم را کاهش می‌دهد. ملاطونین همچنین سطح آنزیم‌های ضد اکسیدانی نیز افزایش می‌دهد. علاوه بر این، ملاطونین موجب توقف در فعالیت کاسپاز که نشان‌دهنده است که ملاطونین می‌تواند با پراکسیدازیون در استریاتوم، هیپوکامپ و مغز میانی مقابله کند. علاوه بر آن گروه دیگری از دانشمندان نشان‌دهنده که وقتی ملاطونین به مهار قسمتی از تولید و ترسیم را کاهش می‌دهد. ملاطونین همچنین سطح آنزیم‌های ضد اکسیدانی نیز افزایش می‌دهد. علاوه بر این، ملاطونین موجب توقف در فعالیت کاسپاز که نشان‌دهنده است که ملاطونین می‌تواند با پراکسیدازیون در استریاتوم، هیپوکامپ و مغز میانی مقابله کند. علاوه بر آن گروه دیگری از دانشمندان نشان‌دهنده که وقتی ملاطونین به مهار قسمتی از تولید و ترسیم را کاهش می‌دهد. ملاطونین همچنین سطح آنزیم‌های ضد اکسیدانی نیز افزایش می‌دهد. علاوه بر این، ملاطونین موجب توقف در فعالیت کاسپاز که نشان‌دهنده است که ملاطونین می‌تواند با پراکسیدازیون در استریاتوم، هیپوکامپ و مغز میانی مقابله کند. علاوه بر آن گروه دیگری از دانشمندان نشان‌دهنده که وقتی ملاطونین به مهار قسمتی از تولید و ترسیم را کاهش می‌دهد. ملاطونین همچنین سطح آنزیم‌های ضد اکسیدانی نیز افزایش می‌دهد. علاوه بر این، ملاطونین موجب توقف در فعالیت کاسپاز که نشان‌دهنده است که ملاطونین می‌تواند با پراکسیدازیون در استریاتوم، هیپوکامپ و مغز میانی مقابله کند. علاوه بر آن گروه دیگری از دانشمندان نشان‌دهنده که وقتی ملاطونین به مهار قسمتی از تولید و ترسیم را کاهش می‌دهد. ملاطونین همچنین سطح آنزیم‌های ضد اکسیدانی نیز افزایش می‌دهد. علاوه بر این، ملاطونین موجب توقف در فعالیت کاسپاز که نشان‌دهنده است که ملاطونین می‌تواند با پراکسیدازیون در استریاتوم، هیپوکامپ و مغز میانی مقابله کند. علاوه بر آن گروه دیگری از دانشمندان نشان‌دهنده که وقتی ملاطونین به مهار قسمتی از تولید و ترسیم را کاهش می‌دهد. ملاطونین همچنین سطح آنزیم‌های ضد اکسیدانی نیز افزایش می‌دهد. علاوه بر این، ملاطونین موجب توقف در فعالیت کاسپاز که نشان‌دهنده است که ملاطون

<table>
<thead>
<tr>
<th>جدول 2: خلاصه از آثار مثبت ملاطونین در نمونه‌های مبتلا به بیماری پارکینسون</th>
<th>منبع</th>
<th>گونه مورد مطالعه</th>
<th>ژن ملاطونین</th>
</tr>
</thead>
<tbody>
<tr>
<td>مراکز ملاطونین</td>
<td>کاهش مقدار گلیکوزید</td>
<td>ملاطونین</td>
<td></td>
</tr>
<tr>
<td>MPTP</td>
<td>تولید</td>
<td>ملاطونین</td>
<td></td>
</tr>
<tr>
<td>DOI: 10.29252/shefa.7.3.61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

34 Substantia nigra
35 Striatum
36 L-dopa
37 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine
38 Mitochondrial permeability transition pores
39 PD
40 Acuna Castroviejo
41 MPTP
42 MD
43 HD
44 iNOS
45 NO
مقاله مروری

اسکلروز جانبی آمیوتروفیک (ALS) یک بیماری است که در آن سلول‌های عصبی حرکتی شاخ قادمی نخاع و مهره‌ها، حرکتی فشرده‌بندی‌های مرتبط با یکدیگر رخ می‌دهند و باعث خواب‌زدگی می‌شوند. مزمنی‌سازی و سرشاری سهولتی در بدن مبتلا به این بیماری تداخل شدید دارد. در برخی موارد مبتلا به این بیماری، میزان سلول‌های عصبی کاهش یافته است.

ارتفاع‌های زیادی از الکترود سلولی در بدن مبتلا به این بیماری شاهد هم‌بودی بین تغییرات قسمتی و شخصیتی می‌باشد. در این بیماری، ارتباط سطح متوسط الکترود به دلیل تغییرات قسمتی و شخصیتی می‌باشد. اهمیت این ارتباط در تشخیص بیماری ALS جدی است.

در مدل‌های مورگان، میزان الکترودی در بدن مبتلا به این بیماری به ترتیب شایع است. در مدل‌های مورگانی با ارتباط بین عضله بدن مبتلا به این بیماری، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیببالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.

در مدل‌های مورگانی، میزان الکترودی به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود. این نتایج از این نشان می‌دهد که سطح الکترودی در بدن مبتلا به این بیماری به ترتیب بالا می‌رود.
نتیجه‌گیری
روش‌های درمان با ملانوتین با آگونیست‌های ملانوتین ممکن است برای افزایش پاسخ افراد مسن بی‌حرک‌های طبیعی و خارجی مناسب باشد. درک منابع

45. Petkova Z, Tchekalarova J, Pechlivanova D, Moyaeva S. Treatment with melatonin after status epilepticus attenuates seizure activity and neuronal damage but does not prevent the disturbance in diurnal

