The Role of Astrocytes in the Central Nervous System: Physiological and Pathophysiological Conditions

Samira Ramazi1, Fatemeh Arani1, Atlasi Safaei1, Zeinab abbasi1, Zahra Heidari1, Hanieh Ghasemian Nafchi1, Homa Mohammadsadeghi1, Fariba Karimzadeh1*

1Department of Physiology, Medical School, Iran University of Medical Sciences, Tehran, Iran
2Mental Health Research Center, Tehran Institute of Psychiatry, School of Behavioral Science and Mental Health, Iran University of Medical Sciences, Tehran, Iran
3Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran

*Corresponding Author: Fariba Karimzadeh
Email: karimzade.f@iums.ac.ir

ABSTRACT

Introduction: Astrocytes are cells with distinct morphological and functional properties in certain areas of the brain and play regulatory roles, such as neurogenesis, synaptogenesis, control of the blood-brain barrier permeability, and maintaining extracellular homeostasis. Moreover, astrocytes play a key role in the development and modulation of neural circuits through communicating with axons, dendrites, and synapses according to the needs of the surrounding cells. Furthermore, astrocytes play an essential role in synaptic plasticity, and memory formation via the modulation of neural function. Mature astrocytes are activated following central nervous system damage and changed to reactive astrocytes type A1 and A2. Supporting roles of reactive astrocytes may shift to toxic functions and finally cause the progression of neurological diseases. Neurotransmitter disorder, abnormal brain development, and regeneration of synaptic structures are observed in the brains of patients with neuropsychological diseases. Extensive studies have pointed to the role of astrocytes in depression, schizophrenia, and drug dependence. On the other hand, astrocytes are an important factor in neuronal damage in neurodegenerative diseases. Neurological and radiological studies have shown that these diseases are associated with severe inflammation and astrocytes are among the most important cells that cause inflammation. Reactive astrocytes play a role in the pathology of various neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, lateral amyotrophic sclerosis, multiple sclerosis, and Huntington’s. Alterations in neurotransmitters, cellular connections, receptors, signaling pathways (especially in the field of inflammation), secretion of inflammatory factors, aqueous channels, secretion of growth factors, protein deposition, ionic homeostasis, and finally, changes in the size and number of astrocytes have been considered as the most important pathogenic mechanisms in astrocytes. Conclusion: Regulation of reactive astrocytes could be an effective clinical strategy for the treatment of neurological and psychological diseases.

Keywords:
1. Astrocytes
2. Neurodegenerative Diseases
3. Mental Disorders
نقش آستروسیتهای در سیستم عصبی مرکزی: شرایط فیزیولوژیک و پاتولوژیک

سمایا رضمی، فاطمه آرانتی، اطلسی صفایی، زینب عباسی، زهرا جعفری، حانیه قاسمی نافچی، هما محمدصادقی، فریبا کریم‌زاده

گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، نیشابور، ایران

گروه تحقیقات بیماری‌های رونده، استاندارد وزارت بهداشت، روان و بهداشت، دانشگاه علوم پزشکی ایران، نیشابور، ایران

گروه تحقیقات سلولی و مولکولی، دانشگاه علوم پزشکی ایران، تهران، ایران

مقدمه: آستروسیتهای سلول‌های با ویژگی‌های عضلانی و ظاهری مشخص، در نواحی مغزی وجود دارند و در نروژنژ، سیناپتوژن، کنترل نفوذ پذیری سد خونی- مغزی و حفظ هموستاز خارج سلولی، نقش تنظیم کننده دارند. به علاوه، آستروسیتهای ارسال سلول‌های اطلاع و از طریق ارتباط با یک سیستم‌های نورونی، در نگه‌دارنده‌های سیستم عصبی مرکزی جایگزین هستند. این سلول‌ها به عنوان مراقب‌هایی از طرف فیزیولوژیک و پاتولوژیک در استقرار و بهبود نشانه‌های عصبی نقش دارند.

مراجعه‌گری: آستروسیتهای سلول‌های با ویژگی‌های عضلانی و ظاهری مشخص، در نواحی مغزی وجود دارند و در نروژنژ، سیناپتوژن، کنترل نفوذ پذیری سد خونی- مغزی و حفظ هموستاز خارج سلولی، نقش تنظیم کننده دارند. به علاوه، آستروسیتهای ارسال سلول‌های اطلاع و از طریق ارتباط با یک سیستم‌های نورونی، در نگه‌دارنده‌های سیستم عصبی مرکزی جایگزین هستند. این سلول‌ها به عنوان مراقب‌هایی از طرف فیزیولوژیک و پاتولوژیک در استقرار و بهبود نشانه‌های عصبی نقش دارند.

واژه‌های کلیدی:
1- آستروسیتهای
2- بیماری‌های نورودژنراتیو
3- اختلالات روانی

اطلاعات مقاله:
پذیرش: 13 خرداد 1400
اصلاح: 29 اردیبهشت 1400
دریافت: 28 اردیبهشت 1400

نویسنده مسئول: فریدا کریم‌زاده
پست الکترونیک: karimzade.f@iums.ac.ir
آستروسیت‌ها در ایجاد اتصال سیناپسی در سیستم عصبی نقش دارند. در سه دهه اخیر، تعدادی از یافته‌ها به اهمیت آسیب‌های وارد شده به سیناپس را نیز ترمیم می‌کنند. همچنین، این سلول‌ها در کشت، افزایش می‌ابدند و در حفظ بقای نورون‌ها و تشکیل سیناپس در محیط قادرنده سیگنال‌های القایی تشکیل سیناپس را نیز ارسال می‌کنند. آستروسیت‌ها مختل‌اند پروپانوئیائیدین و به آن‌ها امکان سیگنالینگ، منجر به آزاد شدن انتقال‌دهنده‌های عصبی و آزاد شدن انتقال‌دهنده‌های عصبی مختل‌اند. در نهایت، این سلول‌ها می‌شود که این هم‌مان پدیده شناخته شده است، سبب ایجاد سیگنال‌های کلسیم در این انتقال‌دهنده عصبی را بر روی آستروسیت‌ها بیان می‌کند. سیگنال‌ها از طریق گیرنده‌های فعالیت عصبی، منجر به آزاد شدن انتقال‌دهنده‌های عصبی و آزاد شدن انتقال‌دهنده‌های عصبی مختل‌اند. در نهایت، این سلول‌ها همراه با نواحی قبلاً و بعد از سیناپس، در پیام‌رسانی سیناپسی نقش دارند. زوائد ساختاری از طریق انتشار و جذب انتقال‌دهنده‌های سیناپس در تماس است، این ارتباط سیناپسی را کنترل می‌کند. یک آستروسیت تقریباً با سیناپس‌ها ارتباط نزدیکی داشته و عملکرد و انتقال و تنظیم عروق مغزی را ایفا می‌کند. آستروسیت‌ها، این سلول‌ها را قادر می‌سازند تا نقش عنصر ارتباطی فعال سیستم عصبی مرکزی را ایفا کنند و همچنین توسعته، هوموستاز و بازسازی ماده سفید، از پاسخ‌های آنتی‌اکسیدانی و التهابی، کنترل جریان خون غمانی، تأمین انرژی متابولیسم، هپاتوسی‌پن، PH و همچنین تولید، هپاتوسی‌پن و بازسازی ماده سفید، از مهم‌ترین وظایف آستروسیت‌ها به بیانش می‌پردازند. نشان داده شده که آستروسیت‌ها در عملکرد سیستم عصبی ریشه‌دارند و رفتار شخصی سینی، که از منابع ارتباطی فعال سیستم عصبی مرکزی هستند، تعیین آستروسیت‌ها بیان‌شده که آزاد می‌شود. این سلول‌ها همراه با نواحی قبل و بعد از سیناپس و در لایه‌های عمیق عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیناپس‌ها نقش دارند. می‌توان گفت که آستروسیت‌ها در عملکرد سیناپسی نقش دارند. آستروسیت‌های قطبی از سیناپس قرار داشته و به طور فعال در توسعه و عملکرد سیستم‌های عصبی قطبی در لایه‌های عمیق و در نزدیک‌ترین سیستم‌های عصبی مرکزی شناخته شده بودند، اما بر اساس مطالعات کنونی، وظایف گسترش‌برنی برای این سلول‌ها ذکر شده است. این سلول‌ها قادرند عملکردی دوخت
2- آستروسیت‌ها از طریق امکان کلسیم‌های مهاجرتی می‌شوند و انتقال دهنده‌های خود را که برای انتقال‌پذیری سیتوبیسیس ضروری است، از می‌کند. این کلیزا، ATP به انتقال مولکول‌دار کلسیم، ATPD و سرین D به عنوان گلیاها عصبی و سیتوبیسیس را تظیم می‌کند.

3- آستروسیت‌ها با زیاده‌ترین ارتباط برق‌رسانی می‌کنند. این آستروسیت‌ها به تأمین انرژی وارد آستروسیت‌ها شده و طی گلیکولیز به لکتات ایفای می‌کنند. آستروسیت‌ها برای باز جذب و چرخه نقش هماهنگ در شکل‌گیری حافظه بیانی ایفا می‌کنند، بنابراین گردش خون (جريان خون) را به می‌رسد، پلاستیسیتی سیناپسی و یادگیری و حافظه. طبق دیگر مطالعات انجام شده، به نظر می‌رسد که در تأثیر آستروسیت‌ها با افزایش وزنیکول انتقال‌های فیدرکی دارند. آستروسیت‌ها در شبکه نورون‌ها، انتقال‌های سیناپسی و هوموستازی نوروتنرژی‌ها به توجه به تأثیر آستروسیت‌ها بر سیناپتوژن، عملکرد آستروسیت‌ها در سیستم عصبی و سیناپتوژن، عملکرد آستروسیت‌ها در سیستم عصبی می‌باشد که فعالیت‌های عصبی و سیناپتوژن را تنظیم می‌کند.

4- انتقال‌های سیناپسی، این نشانه‌گرانه تأثیر آستروسیت‌ها در سیستم عصبی بودن. تماس نزدیک بین آستروسیت‌ها و نورون‌ها به آستروسیت‌ها این اثر را بیش از مقداری نیاز به طور مستقیم گزارش می‌کند. GLUT1 از میان آستروسیت‌ها و نورون‌ها انتقال‌های سیناپسی و هوموستازی نوروتنرژی‌ها می‌باشد که تأثیر خوب نزدیک به زمان نیاز به تأثیر آستروسیت‌ها در سیستم عصبی در تبدیل می‌شود.

5- با توجه به تأثیر آستروسیت‌ها بر سیناپتوژن، عملکرد سیناپسوی سیتوبیسیس و هویت‌های نورون و مولکول‌های فیبریلاسیون گلیال در تغییرات قوی در حافظه و یادگیری نقش آستروسیت‌ها را ایفا می‌کنند.

نشان‌گرانه آستروسیت‌ها در حافظه و یادگیری

به توجه به آستروسیت‌ها بر سیناپتوژن، عملکرد سیناپسوی سیتوبیسیس و هویت‌های نورون و مولکول‌های فیبریلاسیون گلیال در تغییرات قوی در حافظه و یادگیری نقش آستروسیت‌ها را ایفا می‌کنند.

1- آستروسیت‌ها از طریق امکان کلسیم‌های مهاجرتی می‌شوند و انتقال دهنده‌های خود را که برای انتقال‌پذیری سیتوبیسیس ضروری است، از می‌کند. این کلیزا، ATP به انتقال مولکول‌دار کلسیم، ATPD و سرین D به عنوان گلیاها عصبی و سیتوبیسیس را تظیم می‌کند.

2- آستروسیت‌ها با زیاده‌ترین ارتباط برق‌رسانی می‌کنند. این آستروسیت‌ها به تأمین انرژی وارد آستروسیت‌ها شده و طی گلیکولیز به لکتات ایفای می‌کنند. آستروسیت‌ها برای باز جذب و چرخه نقش هماهنگ در شکل‌گیری حافظه بیانی ایفا می‌کنند، بنابراین گردش خون (جريان خون) را به می‌رسد، پلاستیسیتی سیناپسی و یادگیری و حافظه. طبق دیگر مطالعات انجام شده، به نظر می‌رسد که در تأثیر آستروسیت‌ها با افزایش وزنیکول انتقال‌های فیدرکی دارند. آستروسیت‌ها در شبکه نورون‌ها، انتقال‌های سیناپسی و هوموستازی نوروتنرژی‌ها به توجه به تأثیر آستروسیت‌ها بر سیناپتوژن، عملکرد آستروسیت‌ها در سیستم عصبی می‌باشد که فعالیت‌های عصبی و سیناپتوژن را تنظیم می‌کند.

4- انتقال‌های سیناپسی، این نشانه‌گرانه تأثیر آستروسیت‌ها در سیستم عصبی بودن. تماس نزدیک بین آستروسیت‌ها و نورون‌ها به آستروسیت‌ها این اثر را بیش از مقداری نیاز به طور مستقیم گزارش می‌کند. GLUT1 از میان آستروسیت‌ها و نورون‌ها انتقال‌های سیناپسی و هوموستازی نوروتنرژی‌ها می‌باشد که تأثیر خوب نزدیک به زمان نیاز به تأثیر آستروسیت‌ها در سیستم عصبی در تغییرات قوی در حافظه و یادگیری نقش آستروسیت‌ها را ایفا می‌کند.

1- آستروسیت‌ها از طریق امکان کلسیم‌های مهاجرتی می‌شوند و انتقال دهنده‌های خود را که برای انتقال‌پذیری سیتوبیسیس ضروری است، از می‌کند. این کلیزا، ATP به انتقال مولکول‌دار کلسیم، ATPD و سرین D به عنوان گلیاها عصبی و سیتوبیسیس را تظیم می‌کند.

2- آستروسیت‌ها با زیاده‌ترین ارتباط برق‌رسانی می‌کنند. این آستروسیت‌ها به تأمین انرژی وارد آستروسیت‌ها شده و طی گلیکولیز به لکتات ایفای می‌کنند. آستروسیت‌ها برای باز جذب و چرخه نقش هماهنگ در شکل‌گیری حافظه بیانی ایفا می‌کنند، بنابراین گردش خون (جريان خون) را به می‌رسد، پلاستیسیتی سیناپسی و یادگیری و حافظه. طبق دیگر مطالعات انجام شده، به نظر می‌رسد که در تأثیر آستروسیت‌ها با افزایش وزنیکول انتقال‌های فیدرکی دارند. آستروسیت‌ها در شبکه نورون‌ها، انتقال‌های سیناپسی و هوموستازی نوروتنرژی‌ها به توجه به تأثیر آستروسیت‌ها بر سیناپتوژن، عملکرد آستروسیت‌ها در سیستم عصبی می‌باشد که فعالیت‌های عصبی و سیناپتوژن را تنظیم می‌کند.

4- انتقال‌های سیناپسی، این نشانه‌گرانه تأثیر آستروسیت‌ها در سیستم عصبی بودن. تماس نزدیک بین آستروسیت‌ها و نورون‌ها به آستروسیت‌ها این اثر را بیش از مقداری نیاز به طور مستقیم گزارش می‌کند. GLUT1 از میان آستروسیت‌ها و نورون‌ها انتقال‌های سیناپسی و هوموستازی نوروتنرژی‌ها می‌باشد که تأثیر خوب نزدیک به زمان نیاز به تأثیر آستروسیت‌ها در سیستم عصبی در تغییرات قوی در حافظه و یادگیری نقش آستروسیت‌ها را ایفا می‌کند.
آن‌های ایمنی در واکنش‌های التهاب عصبی در گروه اول شامل لنفوسیت‌ها، مونوسیت‌ها و ماکروفاژها در سیستم خونی و گروه دوم شامل میکروگلیای و استروسیت‌ها در سیستم عصبی مرکزی می‌باشند (9). از سیستم عصبی مرکزی، فعالیت آستروسیت‌ها، همکار اصلی آن در سامانه آستروسیت‌ها در سیستم عصبی مرکزی می‌باشد (9، 39). همچنین فعالیت آستروسیت‌ها بتارکتر از سایر سلول‌های عصبی در سامانه آستروسیت‌ها در سیستم عصبی مرکزی می‌باشد (9). همکار اصلی آن در سامانه آستروسیت‌ها در سیستم عصبی مرکزی می‌باشد (9).

آستروسیت‌ها از سلول‌های ایمنی در واکنش‌های التهاب عصبی در گروه اول شامل لنفوسیت‌ها، مونوسیت‌ها و ماکروفاژها در سیستم خونی و گروه دوم شامل میکروگلیای و استروسیت‌ها در سیستم عصبی مرکزی می‌باشند (9).

از سیستم عصبی مرکزی، فعالیت آستروسیت‌ها، همکار اصلی آن در سامانه آستروسیت‌ها در سیستم عصبی مرکزی می‌باشد (9، 39). همچنین فعالیت آستروسیت‌ها بتارکتر از سایر سلول‌های عصبی در سامانه آستروسیت‌ها در سیستم عصبی مرکزی می‌باشد (9). همکار اصلی آن در سامانه آستروسیت‌ها در سیستم عصبی مرکزی می‌باشد (9).

آستروسیت‌ها، همکار اصلی آن در سامانه آستروسیت‌ها در سیستم عصبی مرکزی می‌باشد (9، 39). همچنین فعالیت آستروسیت‌ها بتارکتر از سایر سلول‌های عصبی در سامانه آستروسیت‌ها در سیستم عصبی مرکزی می‌باشد (9). همکار اصلی آن در سامانه آستروسیت‌ها در سیستم عصبی مرکزی می‌باشد (9)

11 Toll like receptor
12 Receptor for advanced glycation endproducts
13 Interleukin-1
14 Interferon gamma
15 Transforming growth factor beta3
16 Transforming growth factor beta1
17 Monocyte chemoattractant protein-1
18 Tumor necrosis factor-α (TNFα)
19 Nitric oxide
20 C-X-C Motif Chemokine Ligand 12
21 Nuclear factor-kB (NF-kB)
22 Signal transducer and activator of transcription 3 (STAT3)
کاوش انتشار کردن TRPV2، توکسین‌های سطحی ممکن است مسیرهای انتقال دهنده غیر خونی انتقال ضرر را از سطح به سطح کاهش دهد.

نتایج امروزی در اختلالات خلقی که مشخصه آن‌ها ممکن است بی‌درمانی، مورد وصرف و عفونت مجاری آستروسیت‌ها می‌باشد، مشخص به خصوص در بیمارانی که بیماری‌های خلقی را دارند، بیشتر در بیمارانی که بیماری‌های خلقی را دارند.

نتایج امروزی در اختلالات خلقی که مشخصه آن‌ها ممکن است بی‌درمانی، مورد وصرف و عفونت مجاری آستروسیت‌ها می‌باشد، مشخص به خصوص در بیمارانی که بیماری‌های خلقی را دارند، بیشتر در بیمارانی که بیماری‌های خلقی را دارند.
در هسته آکومبنس، موجب حالات بیماری آکومبنس در مغز می‌شود. از طرف دیگر، تجویز یک وکتور نقش ناقل‌های گلوتامات آستروسیتیک را در مدل اعتیاد مغز به هسته آکومبنس، نقش نظارتی مهمی در سیستم مدار عصبی با واسطه گلوتامات از قشر پره فرونتال در مغز... در حال حاضر باشد (76)، در میان مدل‌های مطرح شده، اطلاعات میان آکومبنس 33 مولکول اصلی اصله تعیین الجیژه، آنتاگونیست دارویی آستروسیت های فعال می‌باشد و مطالعات معنوی تازه‌تری نیز در یکی از این شواهد نشان داده شده است.

از این مکانیسم‌ها، گاهی به مطالعات مورد نظر نیز اشاره می‌شود. در مطالعات آزمایشگاهی به ترتیب، آن می‌باشد. در مطالعات آزمایشگاهی که روی آرتورسیت های آسیخته کشته در مطالعات آزمایشگاهی به ترتیب، آن می‌باشد. در مطالعات آزمایشگاهی که روی آرتورسیت های آسیخته کشته در مطالعات آزمایشگاهی به ترتیب، آن می‌باشد. در مطالعات آزمایشگاهی به ترتیب، آن می‌ба...
اصسبی دارند و اختلال عملکرد آستروسیت‌ها ممکن است در مرگ اصسبی یا برود اختلالات اصسبی نقص داشته باشد (۳۴). آستروسیت‌ها و آکشن، یک از فعال شدن، نقص حمامی خود را از دست می‌دهند و عملکرد سرمی را در پیش‌رنگ پیامدهای اصسبی پیدا می‌کنند (تصویر ۳). این اکشن نقش آستروسیت‌ها در پیامدهای نورودزرتان، صرع و حتی آسیب مغزی بررسی شده است (۱۲۶ - ۱۲۷). در بررسی‌های خلاصه، نقش آستروسیت‌ها واکنشی را در پیامدهای مختلف عصبی مانند آلزایمر، پارکینسون، اسکلروز آیموتروفکی جانبی، مولتیپل اسکلروز و بیماری هانتینگتون بیان می‌کنند.

نقش آستروسیت‌ها در آلزایمر

بیماری آلزایمر یکی از شایع‌ترین بیماری‌های سیستم عصبی مغزی است که مشخصه آن اختلال حافظه و عملکرد شناختی است (۱۷۲). از نظر پاتولوژیک، تجمع پروتئین‌های آلزایمری مانند پروتئین‌های قلی و پروتئین‌های تاکا یا فسفولاپسیون غیرطبیعی، در بافت مغزی افراد آلزایمری مشاهده است (۱۲۸). تصویر می‌شود علت بیماری آلزایمر، اختلال در رابطه بین عملکرد‌های عصبی و آستروسیت‌پیک در نوای از این اینکه خصوصیات پیک است (۱۲۹). پروتئین‌های با مغز طبیعی، توسط آستروسیت‌ها با کاسپازی می‌شود. اما در آلزایمر، کاهش یا اکسپرسیون آیموتیکی از این تواند می‌یابد (۱۲۶).

مطالعات حیوانی انجام شده نشان می‌دهند که آستروسیت‌ها نقش مهمی در ایجاد پیامدهای آکسپرسیون کننده GDNF و BDNF می‌کنند که می‌تواند به یک هدف دارویی جدید برای بیماری‌های آلزایمر و پارکینسون برسد. از این دستگاه، بسیاری از مطالعات سعی در کاهش اسپایک و پروتئین‌های آلزایمری مانند پروتئین‌های قلی و پروتئین‌های تاکا یا فسفولاپسیون غیرطبیعی در بافت مغزی افراد آلزایمری مشاهده است. این واکنش‌ها در بیماری‌های آلزایمر ممکن است نقش حامی خود را از دست می‌دهند و عملکرد سرمی را در پیش‌رنگ پیامدهای اصسبی پیدا می‌کنند.

مطالعات نشان داده‌کننده فاکتورهای محلول مشتق از آستروسیت‌ها نقش مهمی در تنظیم قدرت سیستمی و بالاستیسیت داردند. این منظور، اثر عوامل مشتق از آستروسیت‌ها بر حساسیت به واکنش‌گیری به مواد مخدر با استفاده از میکث كشت آستروسیت‌ها مورد بررسی قرار گرفته. نتایج نشان داد که تجویز کندیدشیدن با سیستم آستروسیتیک در هسته آکشریس، موش باعث ایجاد حساسیت در رفتار خانم‌ها از مله‌های اکسپرسیون و نیرویی می‌شود. بنابراین آستروسیت‌ها به دو راه تقویتی فکر می‌شود (۱۲۸ - ۱۱۸).

از آنجایی که عوامل مشتق از آستروسیت‌ها بر حساسیت واکنش‌گیری به مواد مخدر تأثیر می‌گذارد، نقش تغییر از نوع مخدر را تغییر می‌دهد. یعنی آستروسیت‌ها با تولید عوامل مشتق از آستروسیت‌ها، واکنش‌گیری به مواد مخدر را تقویت می‌کنند.

مطالعات حیوانی نشان می‌دهند که آستروسیت‌ها نقش مهمی در تنظیم قدرت سیستمی و بالاستیسیت داردند. این منظور، اثر عوامل مشتق از آستروسیت‌ها بر حساسیت به واکنش‌گیری به مواد مخدر با استفاده از میکث كشت آستروسیت‌ها مورد بررسی قرار گرفته. نتایج نشان داد که تجویز کندیدشیدن با سیستم آستروسیتیک در هسته آکشریس، موش باعث ایجاد حساسیت در رفتار خانم‌ها از مله‌های اکسپرسیون و نیرویی می‌شود. بنابراین آستروسیت‌ها به دو راه تقویتی فکر می‌شود (۱۲۸ - ۱۱۸).

مطالعات حیوانی نشان می‌دهند که آستروسیت‌ها نقش مهمی در تنظیم قدرت سیستمی و بالاستیسیت داردند. این منظور، اثر عوامل مشتق از آستروسیت‌ها بر حساسیت به واکنش‌گیری به مواد مخدر با استفاده از میکث كشت آستروسیت‌ها مورد بررسی قرار گرفته. نتایج نشان داد که تجویز کندیدشیدن با سیستم آستروسیتیک در هسته آکشریس، موش باعث ایجاد حساسیت در رفتار خانم‌ها از مله‌های اکسپرسیون و نیرویی می‌شود. بنابراین آستروسیت‌ها به دو راه تقویتی فکر می‌شود (۱۲۸ - ۱۱۸).
نقش آستروسیت‌ها در پارکینسون

بیماری پارکینسون یک اختلال عصبی است که به دلیل تلفات زیادی سلول‌های عصبی و اثرات آن بر عملکرد سیستم‌های آتروسیتی در داخل مغز و جلوگیری از آن افکاده است. ارتباط معکوس بین آستروسیت‌ها و ماتش آزمایش و مدل ریزش در آستروسیت‌ها و ویژگی‌های هم‌مرنگی در مدل مبتلا به بیماری آلزایمر و بیماری پارکینسون، اهمیت زیادی برای سلامت نورون‌های پارکینسونی دارند. این همگامی در آستروسیت‌ها و فعالیت‌های بی‌اساسی در بیماری آزمایش در بالینی پارکینسون و در پارکینسون را تأیید کرد. از طرف دیگر، نشان داده شده که آستروسیت‌ها در مراحل مختلف رشد و ورود نورون‌ها به مغز نقش مهمی در تعامل بین آستروسیت‌ها و نورون‌ها دارند.

1. β-site APP Cleaving Enzyme 1 (BACE1)
2. α-synuclein
3. Lewy Bodies

141 مطالعه موردی ای در مورد تشکیل پلاک آمیلودزی در آزمودن کد (130). یک مطالعه دیگر همچنین بیان قوی آزمایش 1 بر دندمین
4. Monoamine Oxidase enzyme
5. Janus kinases/signal transducer and activator of transcription proteins
6. Wingless-type MMTV integration site
7. Frizzled1
8. Wnt1
9. β-catenin
10. L-twist
11. β-site APP Cleaving Enzyme 1 (BACE1)
12. α-synuclein
13. Lewy Bodies
نقش آستروسیتوس در عصب‌پاتریوتیسم

آمیتیر و فیک

سندرم جانین آمیتیروفیک، یک پیماره عصبی حركتی پیشرونه و برگشت ناپذیر است که با حضور اصلی‌تر از حرکتی در سیستم عصبی مركزی مشخص می‌شود و در نتیجه ناتمام در عضله ثانی به خاک رسیدن از نارسایی تنفسی می‌گردد. (157) این سیستم عصبی است، سندرم جانین آمیتیروفیک، هنگام مصرف بررسی است و شاوهای نشارده در آزمودن از سری‌کاسپی‌سی‌مالات در به تور‌ور بر آستروسیتوس‌های قاییر می‌باشد، سلول‌های قاییر نشان داده که در آستروسیتوس‌های قاییر در نتیجه ایجاد می‌شود. (157) بین درمان‌های جایگزینی به حادثه، احتمال ابتلا به مولتیپل اسکلروزیس، شدیداً گسترش می‌دهد و این ایمنی نقش مهمی در پاتوژنژی این بیماری می‌شود. از جمله فاکتورهای یا التهابی در داخل بدن، شرایط می‌شود، اما با افزایش فعالیت مولتیپل اسکلروزیس و بیان نشانگرهای ایمنی یا التهابی در داخل بدن، شرایط می‌شود، اما با افزایش فعالیت مولتیپل اسکلروزیس و بیان نشانگرهای ایمنی یا التهابی در داخل بدن، شرایط می‌شود، اما با افزایش فعالیت مولتیپل اسکلروزیس و بیان نشانگرهای ایمنی یا التهابی در داخل بدن، شرایط می‌شود، اما با افزایش فعالیت مولتیپل اسکلروزیس و بیان نشانگرهای ایمنی یا التهابی در داخل بدن، شرایط می‌شود، اما با افزایش فعالیت مولتیپل اسکلروزیس و بیان نشانگرهای ایمنی یا التهابی در داخل بدن، شرایط می‌شود، اما با افزایش فعالیت مولتیپل اسکلروزیس و بیان نشانگرهای ایمنی یا التهابی در داخل بدن، شرایط می‌شود، اما با افزایش فعالیت مولتیپل اسکلروزیس و بیان نشانگرهای ایمنی یا التهابی در داخل بدن، شرایط می‌شود، اما با افزایش فعالیت مولتیپل اسکلروزیس و بیان نشانگرهای ایمنی یا التهابی در داخل بدن، شرایط می‌شود.
عملکرد حرکتی نشان داده و اندازه‌گیری آن در بیماران دیگر و تغییرات عصبی توسط NF-kB تشکیل می‌شود. در مدل مهاجرت‌های آندول‌ها، این نقش کلروپلاست (GABA) در ارتباط با ژن‌های عصبی و احتمالاً ژن‌های عصبی در بیماری هانتینگتون نیز مهم است.

\\[
\text{NF-kB} \\
\text{STAT3} \\
\text{A1} \\
\text{A2} \\
\text{STAT3} \\
\text{NF-kB} \\
\text{A1} \\
\text{A2} \\
\text{NF-kB} \\
\text{STAT3} \\
\text{GABA transporter type 3} \\
\text{A chemokine (chemokine (C-C motif) ligand 5/regulated on activation normal T cell expressed and secreted}}
\]

تصویر 3: نقش آستروسیت‌های واکنشی در محافظت و تخریب نورون‌ها

129
بررسی مطالعات انجام شده نشان می‌دهد که فعالیت آستروسیت‌ها می‌تواند با مکانیسم‌های مختلف اثرات مثبت و منفی داشته باشد. از میان برخی از این اثرات، آستروسیت‌ها، به‌طور مستقیم و با مکانیسم‌های مختلفی اثرگذار هستند.

اثرات آستروسیت‌ها با پروتئین‌های مختلف می‌تواند در بهبود و یا بیماری‌زایی، اثر گذار باشد. نظیر به نقش ایجاد هانتینگتون نقش دارند. همان‌طور که بیان شد، در آستروسیت‌ها، در کلسیلولار، اختلال عملکرد میتوکاندری و فعال شدن به دنبال خواهد داشت. ضمین اینکه تولید ناهنجار اثرات مخرب هانتینگتون در آستروسیت‌ها، از طریق کاهش توانایی کاهش می‌دهد. از طرف دیگر، وجود ژن جهش‌یافته ترشح سایتوکاین‌های التهابی، احتمال ابتلا به آمیزس یا مهار ز آستروسیت‌ها نقش بزرگی در پاتولوژی بیماری آمیزس، جانبه ایامیوتروفیک می‌شوند. واکنش‌های التهابی ناشی مرگ در نورون‌های حرکتی، موجب ایجاد سندروم در آستروسیت‌ها، با القای گلوتامات، کلسیم و آپوپتوز ناشی می‌آمیزد. تجمیع سوپراکسید دیسموتاز در آستروسیت‌ها، در پاتوژنزن بیماری پارکینسون، نقش فراخوانی فاگوسیت‌ها، موجب تخریب نورون‌های سد خونی-مغزی مختل کرده و از طرف دیگر، با توانایی این سلول‌ها در برقراری همостاتیک و حفظ سیگنال‌های پاداشی، نقش داشته باشند.

در تخریب نورونی نقش دارند.

نتیجه‌گیری

اگرچه مطالعات انجام شده نشان می‌دهد که فعالیت آستروسیت‌ها می‌تواند با مکانیسم‌های مختلف اثرات مثبت و منفی داشته باشد که از میان آن‌ها، آستروسیت‌ها به‌طور مستقیم و با مکانیسم‌های مختلفی اثرگذار هستند. همان‌طور که بیان شد، در آستروسیت‌ها، در کلسیلولار، اختلال عملکرد میتوکاندری و فعال شدن به دنبال خواهد داشت. ضمین اینکه تولید ناهنجار اثرات مخرب هانتینگتون در آستروسیت‌ها، از طریق کاهش توانایی کاهش می‌دهد. از طرف دیگر، وجود ژن جهش‌یافته ترشح سایتوکاین‌های التهابی، احتمال ابتلا به آمیزس یا مهار ز آستروسیت‌ها نقش بزرگی در پاتولوژی بیماری آمیزس، جانبه ایامیوتروفیک می‌شوند. واکنش‌های التهابی ناشی مرگ در نورون‌های حرکتی، موجب ایجاد سندروم در آستروسیت‌ها، با القای گلوتامات، کلسیم و آپوپتوز ناشی می‌آمیزد. تجمیع سوپراکسید دیسموتاز در آستروسیت‌ها، در پاتوژنزن بیماری پارکینسون، نقش فراخوانی فاگوسیت‌ها، موجب تخریب نورون‌های سد خونی-مغزی مختل کرده و از طرف دیگر، با توانایی این سلول‌ها در برقراری همостاتیک و حفظ سیگنال‌های پاداشی، نقش داشته باشند.

36. Kanaan NM, Kordover JH, Collier TJJG. Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure in monkeys. 2008; 56(11): 1199-214.

38. Rothhammer V, Quintana FJ, editors. Control of autoimmune CNS inflammation by astrocytes. Seminars in immunopathology; 2015: Springer.

96. Toro CT, Hallak JE, Dunham JS, Deakin JF. Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neuroscience letters. 2006; 404(3): 276-81.

100. Lipina T, Labrie V, Weiner I, Roder J. Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology. 2005; 179(1): 54-67.

110. van Huijstee AN, Mansvelder HD. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction. Frontiers in cellular neuroscience. 2015; 8: 466.

3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase. 1988; 27(1): 49-76.

of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. 2011; 134(9): 2627-41.

178. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, et al. As trocyte Kir4. 1 ion channel deficits contribute to neuronal dysfunction in

