[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Articles In Press ::
Back to the articles list Back to browse issues page
Investigating the potential applications of nanoparticles to combat Alzheimer's disease; a review study
Amir Talebian , Parnian Zare , Mahsa Barfei , Seyedeh Zolal Mousavi Darbi , Amir Mohammad Bagheri * , Mehdi Ranjbar
a. Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran. b. Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran , Amirmobagheri0077@gmail.com
Abstract:   (209 Views)
Introduction: Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disorders, characterized by progressive memory loss and cognitive decline, ultimately leading to dementia. Currently, there is no definitive cure, and available treatments focus only on alleviating symptoms and slowing disease progression. In recent years, nanomedicine has emerged as a potential approach for treating various diseases, including AD. Nanotechnology offer innovative solutions to key challenges in AD treatment, such as poor drug solubility in biological fluids, low bioavailability, limited ability to cross the blood-brain barrier (BBB), and rapid drug metabolism. This systematic review describes the potential applications and benefits of nanoparticles in the fight against AD. Materials and Methods: To achieve the study’s objectives, a comprehensive literature search was conducted across reputable databases, covering publications from 1990 to November 2024. The search included keywords related to AD, its diagnosis, and treatment. Results: The findings suggest that nanoparticles can enhance the effectiveness of existing AD treatments by improving drug solubility, increasing bioavailability, and facilitating drug transport across the BBB. These properties suggest that nanoparticles could be promising tools for more effective AD management. Conclusion: Advances in nanomedicine present significant opportunities for the creation of innovative therapeutic approaches for AD. By improving drug delivery and treatment efficacy, nanoparticles could contribute to early detection, better disease management, and potential long-term treatment.
 
Keywords: Nanotechnology, Central Nervous System Diseases, Memory Disorders, Cognitive Dysfunction
Full-Text [PDF 1425 kb]   (30 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Neuropharmacology
References
1. Mendez MF. Early-onset Alzheimer's disease: nonamnestic subtypes and type 2 AD. Archives of medical research. 2012;43(8):677-85. [DOI:10.1016/j.arcmed.2012.11.009]
2. Organization WH. The global dementia observatory reference guide. World Health Organization; 2018.
3. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. the Lancet. 2011;377(9770):1019-31. [DOI:10.1016/S0140-6736(10)61349-9]
4. Jack CR, Therneau TM, Weigand SD, Wiste HJ, Knopman DS, Vemuri P, et al. Prevalence of biologically vs clinically defined Alzheimer spectrum entities using the National Institute on Aging-Alzheimer's Association research framework. JAMA neurology. 2019;76(10):1174-83. [DOI:10.1001/jamaneurol.2019.1971]
5. Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical pharmacology. 2014; 15: 88(4): 640-51. [DOI:10.1016/j.bcp.2013.12.024]
6. Nistor M, Don M, Parekh M, Sarsoza F, Goodus M, Lopez G, et al. Alpha-and beta-secretase activity as a function of age and beta-amyloid in Down syndrome and normal brain. Neurobiology of aging. 2007;28(10):1493-506. [DOI:10.1016/j.neurobiolaging.2006.06.023]
7. Allen HB. Alzheimer's disease: assessing the role of spirochetes, biofilms, the immune system, and amyloid-β with regard to potential treatment and prevention. Journal of Alzheimer's Disease. 2016;53(4):1271-6. [DOI:10.3233/JAD-160388]
8. Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nature Reviews Neurology. 2018;14(7):399-415. [DOI:10.1038/s41582-018-0013-z]
9. Shirian S, Tahmasebian N, Bakhtiari Moghadm B, Kiani FZ, Amini MR. Anatomical, Physiological, and Pathological Changes in Different Parts of the Brain in Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2024;12(3):103-16. [DOI:10.61186/shefa.12.3.103]
10. Martorana A, Esposito Z, Koch G. Beyond the cholinergic hypothesis: do current drugs work in Alzheimer's disease? CNS neuroscience & therapeutics. 2010;16(4):235-45. [DOI:10.1111/j.1755-5949.2010.00175.x]
11. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, et al. Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology. 2021;20(6):484-96. [DOI:10.1016/S1474-4422(21)00066-1]
12. Luchsinger JA, Noble JM, Scarmeas N. Diet and Alzheimer's disease. Current neurology and neuroscience reports. 2007;7(5):366-72. [DOI:10.1007/s11910-007-0057-8]
13. Solfrizzi V, Panza F, Frisardi V, Seripa D, Logroscino G, Imbimbo BP, et al. Diet and Alzheimer's disease risk factors or prevention: the current evidence. Expert review of neurotherapeutics. 2011; 11(5): 677-708. [DOI:10.1586/ern.11.56]
14. Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu L-P, Moghimi SM, et al. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine: Nanotechnology, Biology and Medicine. 2011; 7(5): 521-40. [DOI:10.1016/j.nano.2011.03.008]
15. Laske C, Sohrabi HR, Frost SM, López-de-Ipiña K, Garrard P, Buscema M, et al. Innovative diagnostic tools for early detection of Alzheimer's disease. Alzheimer's & Dementia. 2015;11(5):561-78. [DOI:10.1016/j.jalz.2014.06.004]
16. Silva S, Almeida AJ, Vale N. Importance of nanoparticles for the delivery of antiparkinsonian drugs. Pharmaceutics. 2021;13(4):508. [DOI:10.3390/pharmaceutics13040508]
17. Karthivashan G, Ganesan P, Park S-Y, Kim J-S, Choi D-K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer's disease. Drug delivery. 2018; 25(1): 307-320. [DOI:10.1080/10717544.2018.1428243]
18. Bagheri AM, Ranjbar M. Nanoparticles for Drug Delivery in Parkinson's Disease: A Review of Potential Applications. The Neuroscience Journal of Shefaye Khatam. 2024; 12(4): 67-80. [DOI:10.61186/shefa.12.4.67]
19. Di Stefano A, Iannitelli A, Laserra S, Sozio P. Drug delivery strategies for Alzheimer's disease treatment. Expert opinion on drug delivery. 2011;8(5):581-603. [DOI:10.1517/17425247.2011.561311]
20. Sarvaiya J, Agrawal Y. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. International journal of biological macromolecules. 2015; 72: 454-65. [DOI:10.1016/j.ijbiomac.2014.08.052]
21. Banks WA. Drug delivery to the brain in Alzheimer's disease: Consideration of the blood-brain barrier. Advanced drug delivery reviews. 2012;64(7):629-39. [DOI:10.1016/j.addr.2011.12.005]
22. Pardridge WM. Treatment of Alzheimer's disease and blood-brain barrier drug delivery. Pharmaceuticals. 2020;13(11):394. [DOI:10.3390/ph13110394]
23. Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal Nanoparticles in Alzheimer's Disease. Journal of Alzheimer's Disease Reports. 2023(Preprint):1-20. [DOI:10.3233/ADR-220112]
24. Poudel P, Park S. Recent advances in the treatment of Alzheimer's disease using nanoparticle-based drug delivery systems. Pharmaceutics. 2022;14(4):835. [DOI:10.3390/pharmaceutics14040835]
25. Choi J-s, Choi HJ, Jung DC, Lee J-H, Cheon J. Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid β self-assembly. Chemical communications. 2008(19):2197-9. [DOI:10.1039/b803294g]
26. Brazaca LC, Sampaio I, Zucolotto V, Janegitz BC. Applications of biosensors in Alzheimer's disease diagnosis. Talanta. 2020; 210: 120644. [DOI:10.1016/j.talanta.2019.120644]
27. Yu Y, Sun X, Tang D, Li C, Zhang L, Nie D, et al. Gelsolin bound β-amyloid peptides (1-40/1-42): electrochemical evaluation of levels of soluble peptide associated with Alzheimer's disease. Biosensors and bioelectronics. 2015; 68: 115-21. [DOI:10.1016/j.bios.2014.12.041]
28. Wu C-C, Ku B-C, Ko C-H, Chiu C-C, Wang G-J, Yang Y-H, et al. Electrochemical impedance spectroscopy analysis of A-beta (1-42) peptide using a nanostructured biochip. Electrochimica Acta. 2014; 134: 249-57. [DOI:10.1016/j.electacta.2014.04.132]
29. Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature Reviews Neurology. 2013; 9(2): 106-18. [DOI:10.1038/nrneurol.2012.263]
30. Kang MK, Lee J, Nguyen AH, Sim SJ. Label-free detection of ApoE4-mediated β-amyloid aggregation on single nanoparticle uncovering Alzheimer's disease. Biosensors and bioelectronics. 2015; 72: 197-204. [DOI:10.1016/j.bios.2015.05.017]
31. Nazıroğlu M, Muhamad S, Pecze L. Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles. Expert review of clinical pharmacology. 2017; 10(7): 773-82. [DOI:10.1080/17512433.2017.1324781]
32. Jana J, Ganguly M, Pal T. Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC advances. 2016; 6(89): 86174-211. [DOI:10.1039/C6RA14173K]
33. Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical society reviews. 2006;35(3):209-17. [DOI:10.1039/B514191E]
34. Zeng F, Peng K, Han L, Yang J. Photothermal and photodynamic therapies via NIR-activated nanoagents in combating Alzheimer's disease. ACS Biomaterials Science & Engineering. 2021;7(8):3573-85. [DOI:10.1021/acsbiomaterials.1c00605]
35. Prades R, Guerrero S, Araya E, Molina C, Salas E, Zurita E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012; 33(29): 7194-205. [DOI:10.1016/j.biomaterials.2012.06.063]
36. Lee JS, Lee BI, Park CB. Photo-induced inhibition of Alzheimer's β-amyloid aggregation in vitro by rose bengal. Biomaterials. 2015; 38: 43-9. [DOI:10.1016/j.biomaterials.2014.10.058]
37. Jiang Y, Zeng Z, Yao J, Guan Y, Jia P, Zhao X, et al. Treatment of Alzheimer's disease with small-molecule photosensitizers. Chinese Chemical Letters. 2023; 34(5): 107966. [DOI:10.1016/j.cclet.2022.107966]
38. Zhang J, Liu J, Zhu Y, Xu Z, Xu J, Wang T, et al. Photodynamic micelles for amyloid β degradation and aggregation inhibition. Chemical Communications. 2016; 52(81): 12044-7. [DOI:10.1039/C6CC06175C]
39. Mahmoudi M, Quinlan-Pluck F, Monopoli MP, Sheibani S, Vali H, Dawson KA, et al. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS chemical neuroscience. 2013; 20; 4(3): 475-85. [DOI:10.1021/cn300196n]
40. Mirsadeghi S, Shanehsazzadeh S, Atyabi F, Dinarvand R. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Materials Science and Engineering: C. 2016;59:390-7. [DOI:10.1016/j.msec.2015.10.026]
41. Carradori D, Balducci C, Re F, Brambilla D, Le Droumaguet B, Flores O, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like transgenic mouse model. Nanomedicine: Nanotechnology, Biology and Medicine. 2018; 14(2): 609-18. [DOI:10.1016/j.nano.2017.12.006]
42. Demeritte T, Viraka Nellore BP, Kanchanapally R, Sinha SS, Pramanik A, Chavva SR, et al. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer's disease biomarkers. ACS applied materials & interfaces. 2015;7(24):13693-700. [DOI:10.1021/acsami.5b03619]
43. Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease. Advanced Materials (Deerfield Beach, Fla). 2012;24(13):1722-8. [DOI:10.1002/adma.201104864]
44. Huang H-M, Ou H-C, Hsieh S-J, Chiang L-Y. Blockage of amyloid β peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells. Life Sciences. 2000;66(16):1525-33. [DOI:10.1016/S0024-3205(00)00470-7]
45. Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL, et al. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology. 2007;32(1):239-43. [DOI:10.1038/sj.npp.1301193]
46. Liu Y, Liu F, Grundke‐Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. The Journal of pathology. 2011;225(1):54-62. [DOI:10.1002/path.2912]
47. Picone P, Sabatino MA, Ditta LA, Amato A, San Biagio PL, Mulè F, et al. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. Journal of controlled release. 2018;270:23-36. [DOI:10.1016/j.jconrel.2017.11.040]
48. Soreq H, Seidman S. Acetylcholinesterase-new roles for an old actor. Nature Reviews Neuroscience. 2001;2(4):294-302. [DOI:10.1038/35067589]
49. Cheung J, Beri V, Shiomi K, Rosenberry TL. Acetylcholinesterase complexes with the natural product inhibitors dihydrotanshinone I and territrem B: Binding site assignment from inhibitor competition and validation through crystal structure determination. Journal of Molecular Neuroscience. 2014;53(3):506-10. [DOI:10.1007/s12031-014-0261-3]
50. Härtig W, Kacza J, Paulke BR, Grosche J, Bauer U, Hoffmann A, et al. In vivo labelling of hippocampal β‐amyloid in triple‐transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles. European Journal of Neuroscience. 2010;31(1):99-109. [DOI:10.1111/j.1460-9568.2009.07038.x]
51. Baysal I, Ucar G, Gultekinoglu M, Ulubayram K, Yabanoglu-Ciftci S. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. Journal of neural transmission. 2017;124:33-45. [DOI:10.1007/s00702-016-1527-4]
52. Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B. Poly (n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain research. 2008;1200:159-68. [DOI:10.1016/j.brainres.2008.01.039]
53. Yang Z-Z, Zhang Y-Q, Wang Z-Z, Wu K, Lou J-N, Qi X-R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. International journal of pharmaceutics. 2013;452(1-2):344-54. [DOI:10.1016/j.ijpharm.2013.05.009]
54. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, et al. Mechanism of thioflavin T binding to amyloid fibrils. Journal of structural biology. 2005;151(3):229-38. [DOI:10.1016/j.jsb.2005.06.006]
55. Siegemund T, Paulke B-R, Schmiedel H, Bordag N, Hoffmann A, Harkany T, et al. Thioflavins released from nanoparticles target fibrillar amyloid β in the hippocampus of APP/PS1 transgenic mice. International journal of developmental neuroscience. 2006;24(2-3):195-201. [DOI:10.1016/j.ijdevneu.2005.11.012]
56. Kumar K, Kumar A, Keegan RM, Deshmukh R. Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease. Biomedicine & pharmacotherapy. 2018;98:297-307. [DOI:10.1016/j.biopha.2017.12.053]
57. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiological reviews. 2001. [DOI:10.1152/physrev.2001.81.2.741]
58. Suzuki T, Nakaya T. Regulation of amyloid β-protein precursor by phosphorylation and protein interactions. Journal of Biological Chemistry. 2008;283(44):29633-7. [DOI:10.1074/jbc.R800003200]
59. Casadesus G, Smith MA, Zhu X, Aliev G, Cash AD, Honda K, et al. Alzheimer disease: evidence for a central pathogenic role of iron-mediated reactive oxygen species. Journal of Alzheimer's disease. 2004;6(2):165-9. [DOI:10.3233/JAD-2004-6208]
60. Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimer's & dementia. 2014;10(1):S76-S83. [DOI:10.1016/j.jalz.2013.12.010]
61. Cheng KK, Chan PS, Fan S, Kwan SM, Yeung KL, Wáng Y-XJ, et al. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Biomaterials. 2015;44:155-72. [DOI:10.1016/j.biomaterials.2014.12.005]
62. Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert opinion on drug delivery. 2009;6(3):211-25. [DOI:10.1517/17425240902758188]
63. Mc Carthy DJ, Malhotra M, O'Mahony AM, Cryan JF, O'Driscoll CM. Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance. Pharmaceutical research. 2015;32:1161-85. [DOI:10.1007/s11095-014-1545-6]
64. Maulik M, Westaway D, Jhamandas J, Kar S. Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Molecular neurobiology. 2013;47:37-63. [DOI:10.1007/s12035-012-8337-y]
65. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Advanced drug delivery reviews. 2010;62(11):1064-79. [DOI:10.1016/j.addr.2010.07.009]
66. Li Y, Cheng Q, Jiang Q, Huang Y, Liu H, Zhao Y, et al. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. Journal of controlled release. 2014;176:104-14. [DOI:10.1016/j.jconrel.2013.12.007]
67. Prakapenka AV, Bimonte-Nelson HA, Sirianni RW. Engineering poly (lactic-co-glycolic acid)(PLGA) micro-and nano-carriers for controlled delivery of 17β-estradiol. Annals of biomedical engineering. 2017;45:1697-709. [DOI:10.1007/s10439-017-1859-8]
68. Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA. Involvement of oxidative stress in Alzheimer disease. Journal of neuropathology & experimental neurology. 2006;65(7):631-41. [DOI:10.1097/01.jnen.0000228136.58062.bf]
69. Liu H, Wang H, Shenvi S, Hagen TM, LIU RM. Glutathione metabolism during aging and in Alzheimer disease. Annals of the New York Academy of Sciences. 2004;1019(1):346-9. [DOI:10.1196/annals.1297.059]
70. Rotman M, Welling MM, Bunschoten A, de Backer ME, Rip J, Nabuurs RJA, et al. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease. Journal of Controlled Release. 2015;203:40-50. [DOI:10.1016/j.jconrel.2015.02.012]
71. Hayyan M, Hashim MA, AlNashef IM. Superoxide ion: generation and chemical implications. Chemical reviews. 2016;116(5):3029-85. [DOI:10.1021/acs.chemrev.5b00407]
72. Reddy MK, Wu L, Kou W, Ghorpade A, Labhasetwar V. Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Applied biochemistry and biotechnology. 2008;151:565-77. [DOI:10.1007/s12010-008-8232-1]
73. Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. International journal of pharmaceutics. 2010;389(1-2):207-12. [DOI:10.1016/j.ijpharm.2010.01.012]
74. Choi Y, Cho Y, Kim M, Grailhe R, Song R. Fluorogenic quantum dot-gold nanoparticle assembly for beta secretase inhibitor screening in live cell. Analytical chemistry. 2012;84(20):8595-601. [DOI:10.1021/ac301574b]
75. Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E, et al. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. Journal of the American Chemical Society. 2008; 19; 130(46): 15437-43. [DOI:10.1021/ja8041806]
76. Wasiak T, Ionov M, Nieznanski K, Nieznanska H, Klementieva O, Granell M, et al. Phosphorus dendrimers affect Alzheimer's (Aβ1-28) peptide and MAP-Tau protein aggregation. Molecular pharmaceutics. 2012;9(3):458-69. [DOI:10.1021/mp2005627]
77. Lowe TL, Strzelec A, Kiessling LL, Murphy RM. Structure− function relationships for inhibitors of β-amyloid toxicity containing the recognition sequence KLVFF. Biochemistry. 2001;40(26):7882-9. [DOI:10.1021/bi002734u]
78. Chafekar SM, Malda H, Merkx M, Meijer E, Viertl D, Lashuel HA, et al. Branched KLVFF tetramers strongly potentiate inhibition of β‐Amyloid aggregation. ChemBioChem. 2007;8(15):1857-64. [DOI:10.1002/cbic.200700338]
79. Boridy S, Takahashi H, Akiyoshi K, Maysinger D. The binding of pullulan modified cholesteryl nanogels to Aβ oligomers and their suppression of cytotoxicity. Biomaterials. 2009;30(29):5583-91. [DOI:10.1016/j.biomaterials.2009.06.010]
80. Ikeda K, Okada T, Sawada S-i, Akiyoshi K, Matsuzaki K. Inhibition of the formation of amyloid β-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS letters. 2006;580(28-29):6587-95. [DOI:10.1016/j.febslet.2006.11.009]
81. Gregori M, Taylor M, Salvati E, Re F, Mancini S, Balducci C, et al. Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer's Aβ peptide. Nanomedicine: Nanotechnology, Biology and Medicine. 2017;13(2):723-32. [DOI:10.1016/j.nano.2016.10.006]
82. Cui Z, Lockman PR, Atwood CS, Hsu C-H, Gupte A, Allen DD, et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases. European journal of pharmaceutics and biopharmaceutics. 2005;59(2):263-72. [DOI:10.1016/j.ejpb.2004.07.009]
83. Liu G, Men P, Kudo W, Perry G, Smith MA. Nanoparticle-chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease. Neuroscience letters. 2009;455(3):187-90. [DOI:10.1016/j.neulet.2009.03.064]
84. Folk DS, Franz KJ. A prochelator activated by β-secretase inhibits Aβ aggregation and suppresses copper-induced reactive oxygen species formation. Journal of the American Chemical Society. 2010;132(14):4994-5. [DOI:10.1021/ja100943r]
85. Hong C, Goins W, Goss J, Burton E, Glorioso J. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's disease-related amyloid-β peptide in vivo. Gene therapy. 2006;13(14):1068-79. [DOI:10.1038/sj.gt.3302719]
86. Legleiter J, Czilli DL, Gitter B, DeMattos RB, Holtzman DM, Kowalewski T. Effect of different anti-Aβ antibodies on Aβ fibrillogenesis as assessed by atomic force microscopy. Journal of molecular biology. 2004;335(4):997-1006. [DOI:10.1016/j.jmb.2003.11.019]
87. Zameer A, Kasturirangan S, Emadi S, Nimmagadda SV, Sierks MR. Anti-oligomeric Aβ single-chain variable domain antibody blocks Aβ-induced toxicity against human neuroblastoma cells. Journal of molecular biology. 2008;384(4):917-28. [DOI:10.1016/j.jmb.2008.09.068]
88. Muyldermans S. Nanobodies: natural single-domain antibodies. Annual review of biochemistry. 2013;82(1):775-97. [DOI:10.1146/annurev-biochem-063011-092449]
89. Pansieri J, Plissonneau M, Stransky-Heilkron N, Dumoulin M, Heinrich-Balard L, Rivory P, et al. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine. 2017;12(14):1675-87. [DOI:10.2217/nnm-2017-0079]
90. Salari S, Bagheri M. Advancements and Challenges in Preclinical Study Models of Neurodegenerative Brain Diseases: Alzheimer's and Parkinson's Diseases. The Neuroscience Journal of Shefaye Khatam.0-.
91. Rastegarian R, Moghadasi M, Mosalanezhad Z, Zeinalebadi R. The interaction effect of high intensity interval swimming and gallic acid consumption on pain tolerance mechanisms in an animal model of Parkinson's disease. The Neuroscience Journal of Shefaye Khatam.10-21. [DOI:10.61186/shefa.12.4.10]
92. Zendehbad SA. Comparative Analysis of Diagnostic Techniques in Alzheimer's Disease: The Role of AI, Biomarkers, and Brain Mapping Methods. The Neuroscience Journal of Shefaye Khatam. 2024;12(3):91-102. [DOI:10.61186/shefa.12.3.91]
93. Moradi HR, Heydarian S, Abdollahinezhad S. Effects of Nanoplastics and Microplastics on the Health of the Peripheral and Central Nervous System. The Neuroscience Journal of Shefaye Khatam. 2024, 12(4): 97-110. [DOI:10.61186/shefa.12.4.97]


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 47 queries by YEKTAWEB 4710