[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 11, Issue 3 (Summer 2023) ::
Shefaye Khatam 2023, 11(3): 110-126 Back to browse issues page
Drug Nanocarriers as a Potential Therapeutic Strategy in Glioblastoma Multiforme
Sohrab Heydarian *
Department of Veterinary, Agriculture Faculty, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. , drsohrab.hey@gmail.com
Abstract:   (1845 Views)
Introduction: Glioblastoma multiforme (GBM) is one of the most common tumors with high mortality and a very aggressive nature. Blood-brain barrier (BBB) limits the penetration of chemotherapy drugs into the tumor tissue. Recent studies have shown that the use of various drug nanocarriers to treat GBM can provide new and effective strategies. These nanocarriers have been successful in targeted drug delivery and mainly include carbon nanotubes, metal nanoparticles, nanoemulsions, microcapsules, polymeric micelles, dendrimers, niosomes, liposomes, and pyrosomes. The ability to accurately and directly deliver drugs to GBM cells via nanocarriers has been able to increase the effectiveness and reduce the side effects of chemotherapy drugs. Conclusion: In this review article, the use of different types of drug nanocarriers is reviewed in the treatment of glioblastoma multiforme, and the future therapeutic perspectives of this method are discussed to overcome the limitations of GBM therapy.
 
Keywords: Glioblastoma, Blood-Brain Barrier, Nanotechnology
Full-Text [PDF 1645 kb]   (1168 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Neuropharmacology
References
1. Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacology & therapeutics. 2015; 152: 63-82. [DOI:10.1016/j.pharmthera.2015.05.005]
2. Chaulagain D, Smolanka V, Smolanka A. Diagnosis and management of astrocytoma: a literature review. 2022.
3. Shirian S, Khetvan-Hafshejani R, Ali E, Modarres Mousavi M, Abdollahi S, Lotfi Bakhshaiesh N. The role of aptamers in the treatment of glioblastoma multiform. Shefaye Khatam. 2019; 7(1): 91-105. [DOI:10.29252/shefa.7.1.91]
4. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nature clinical practice Neurology. 2006; 2(9): 494-503. [DOI:10.1038/ncpneuro0289]
5. Mahvash M, Hugo H-H, Maslehaty H, Mehdorn HM, Stark AM. Glioblastoma multiforme in children: report of 13 cases and review of the literature. Pediatric neurology. 2011; 45(3): 178-80. [DOI:10.1016/j.pediatrneurol.2011.05.004]
6. Winters JL, Wilson D, Davis DG. Congenital glioblastoma multiforme: a report of three cases and a review of the literature. Journal of the neurological sciences. 2001; 188(1-2): 13-9. [DOI:10.1016/S0022-510X(01)00538-X]
7. Hardell L, Carlberg M, Söderqvist F, Mild KH, Morgan LL. Long-term use of cellular phones and brain tumours: increased risk associated with use for⩾ 10 years. Occupational and environmental medicine. 2007; 64(9): 626-32. [DOI:10.1136/oem.2006.029751]
8. Urbańska K, Sokołowska J, Szmidt M, Sysa P. Glioblastoma multiforme-an overview. Contemporary Oncology/Współczesna Onkologia. 2014; 18(5): 307-12. [DOI:10.5114/wo.2014.40559]
9. Korja M, Raj R, Seppä K, Luostarinen T, Malila N, Seppälä M, et al. Glioblastoma survival is improving despite increasing incidence rates: a nationwide study between 2000 and 2013 in Finland. Neuro-Oncology. 2018; 21(3): 370-9. [DOI:10.1093/neuonc/noy164]
10. Philips A, Henshaw DL, Lamburn G, O'Carroll MJ. Brain Tumours: Rise in Glioblastoma Multiforme Incidence in England 1995-2015 Suggests an Adverse Environmental or Lifestyle Factor. Journal of Environmental and Public Health. 2018; 2018: 7910754. [DOI:10.1155/2018/7910754]
11. Chakrabarti I, Cockburn M, Cozen W, Wang Y-P, Preston-Martin S. A population-based description of glioblastoma multiforme in Los Angeles County, 1974-1999. Cancer. 2005; 104(12): 2798-806. [DOI:10.1002/cncr.21539]
12. Hsu J-F, Chu S-M, Liao C-C, Wang C-J, Wang Y-S, Lai M-Y, et al. Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update. Cancers. 2021; 13(2): 195. [DOI:10.3390/cancers13020195]
13. Ideguchi M, Kajiwara K, Goto H, Sugimoto K, Nomura S, Ikeda E, et al. MRI findings and pathological features in early-stage glioblastoma. Journal of Neuro-Oncology. 2015; 123: 289-97. [DOI:10.1007/s11060-015-1797-y]
14. Okita Y, Narita Y, Miyakita Y, Ohno M, Fukushima S, Kayama T, et al. Pathological findings and prognostic factors in recurrent glioblastomas. Brain tumor pathology. 2012; 29: 192-200. [DOI:10.1007/s10014-012-0084-2]
15. Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes & development. 2019; 33(11-12): 591-609. [DOI:10.1101/gad.324301.119]
16. Dréan A, Goldwirt L, Verreault M, Canney M, Schmitt C, Guehennec J, et al. Blood-brain barrier, cytotoxic chemotherapies and glioblastoma. Expert review of neurotherapeutics. 2016; 16(11): 1285-300. [DOI:10.1080/14737175.2016.1202761]
17. Papademetriou IT, Porter T. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer. Therapeutic delivery. 2015; 6(8): 989-1016. [DOI:10.4155/tde.15.48]
18. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nature Reviews Cancer. 2020; 20(1): 26-41. [DOI:10.1038/s41568-019-0205-x]
19. Sprowls SA, Arsiwala TA, Bumgarner JR, Shah N, Lateef SS, Kielkowski BN, et al. Improving CNS delivery to brain metastases by blood-tumor barrier disruption. Trends in cancer. 2019; 5(8): 495-505. [DOI:10.1016/j.trecan.2019.06.003]
20. Liao W, Fan S, Zheng Y, Liao S, Xiong Y, Li Y, et al. Recent Advances on Glioblastoma Multiforme and Nano-drug Carriers: A Review. Current Medicinal Chemistry. 2019; 26(31): 5862-74. [DOI:10.2174/0929867325666180514113136]
21. Zhao M, van Straten D, Broekman ML, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020; 10(3): 1355. [DOI:10.7150/thno.38147]
22. Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artificial cells, nanomedicine, and biotechnology. 2016; 44(4): 1051-61. [DOI:10.3109/21691401.2015.1052465]
23. Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng M-Q, Duong N, et al. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings of the National Academy of sciences. 2013; 110(29): 11751-6. [DOI:10.1073/pnas.1304504110]
24. Cha GD, Kang T, Baik S, Kim D, Choi SH, Hyeon T, et al. Advances in drug delivery technology for the treatment of glioblastoma multiforme. Journal of Controlled Release. 2020; 328: 350-67. [DOI:10.1016/j.jconrel.2020.09.002]
25. Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. Journal of Controlled Release. 2012; 159(3): 312-23. [DOI:10.1016/j.jconrel.2011.12.012]
26. Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Scientific Reports. 2019; 9(1): 8278. [DOI:10.1038/s41598-019-44569-6]
27. Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. International Journal of Molecular Sciences. 2019; 20(12): 3108. [DOI:10.3390/ijms20123108]
28. Jain A, Jain A, Garg NK, Tyagi RK, Singh B, Katare OP, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin-methotrexate conjugates for an improved understanding of brain cancer. Acta Biomaterialia. 2015; 24: 140-51. [DOI:10.1016/j.actbio.2015.06.027]
29. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature medicine. 2012; 18(10): 1580-5. [DOI:10.1038/nm.2933]
30. Michael JS, Lee B-S, Zhang M, Yu JS. Nanotechnology for treatment of glioblastoma multiforme. Journal of Translational Internal Medicine. 2018; 6(3): 128-33. [DOI:10.2478/jtim-2018-0025]
31. Taiarol L, Formicola B, Magro RD, Sesana S, Re F. An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy. Nanomedicine. 2020; 15(19): 1861-71. [DOI:10.2217/nnm-2020-0132]
32. Benny O, Pakneshan P. Novel technologies for antiangiogenic drug delivery in the brain. Cell Adhesion & Migration. 2009; 3(2): 224-9. [DOI:10.4161/cam.3.2.7766]
33. Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artificial cells, nanomedicine, and biotechnology. 2016; 44(1): 410-22. [DOI:10.3109/21691401.2014.955107]
34. Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Advanced Drug Delivery Reviews. 2012; 64(7): 640-65. [DOI:10.1016/j.addr.2011.11.010]
35. Morshed R, Cheng Y, Auffinger B, Wegscheid M, Lesniak M. The potential of polymeric micelles in the context of glioblastoma therapy. Frontiers in Pharmacology. 2013; 4. [DOI:10.3389/fphar.2013.00157]
36. Kim M-S, Kim J-S, Cho WK, Hwang S-J. Enhanced solubility and oral absorption of sirolimus using D-α-tocopheryl polyethylene glycol succinate micelles. Artificial Cells, Nanomedicine, and Biotechnology. 2013; 41(2): 85-91. [DOI:10.3109/21691401.2012.742100]
37. Yin T, Wang P, Li J, Zheng R, Zheng B, Cheng D, et al. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials. 2013; 34(18): 4532-43. [DOI:10.1016/j.biomaterials.2013.02.067]
38. Zheng C, Zheng M, Gong P, Deng J, Yi H, Zhang P, et al. Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy. Biomaterials. 2013; 34(13): 3431-8. [DOI:10.1016/j.biomaterials.2013.01.053]
39. Yang T, Mochida Y, Liu X, Zhou H, Xie J, Anraku Y, et al. Conjugation of glucosylated polymer chains to checkpoint blockade antibodies augments their efficacy and specificity for glioblastoma. Nature Biomedical Engineering. 2021; 5(11): 1274-87. [DOI:10.1038/s41551-021-00803-z]
40. Miura Y, Takenaka T, Toh K, Wu S, Nishihara H, Kano MR, et al. Cyclic RGD-Linked Polymeric Micelles for Targeted Delivery of Platinum Anticancer Drugs to Glioblastoma through the Blood-Brain Tumor Barrier. ACS Nano. 2013; 7(10): 8583-92. [DOI:10.1021/nn402662d]
41. Sun P, Xiao Y, Di Q, Ma W, Ma X, Wang Q, et al. Transferrin Receptor-Targeted PEG-PLA Polymeric Micelles for Chemotherapy Against Glioblastoma Multiforme. International journal of nanomedicine. 2020; 15: 6673-88. [DOI:10.2147/IJN.S257459]
42. Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, et al. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Molecular pharmaceutics. 2013; 10(1): 249-60. [DOI:10.1021/mp300391v]
43. Emerich DF, Thanos CG. Targeted nanoparticle-based drug delivery and diagnosis. Journal of drug targeting. 2007; 15(3): 163-83. [DOI:10.1080/10611860701231810]
44. Hernández-Pedro NY, Rangel-López E, Magaña-Maldonado R, de la Cruz VP, Santamaría del Angel A, Pineda B, et al. Application of nanoparticles on diagnosis and therapy in gliomas. BioMed research international. 2013; 2013. [DOI:10.1155/2013/351031]
45. Fana M, Gallien J, Srinageshwar B, Dunbar GL, Rossignol J. PAMAM dendrimer nanomolecules utilized as drug delivery systems for potential treatment of glioblastoma: a systematic review. International journal of nanomedicine. 2020: 2789-808. [DOI:10.2147/IJN.S243155]
46. Mittal P, Saharan A, Verma R, Altalbawy F, Alfaidi MA, Batiha GE-S, et al. Dendrimers: a new race of pharmaceutical nanocarriers. BioMed Research International. 2021; 2021. [DOI:10.1155/2021/8844030]
47. Fakhoury M. Drug delivery approaches for the treatment of glioblastoma multiforme. Artificial cells, nanomedicine, and biotechnology. 2016; 44(6): 1365-73. [DOI:10.3109/21691401.2015.1052467]
48. Bai CZ, Choi S, Nam K, An S, Park J-S. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma. International journal of pharmaceutics. 2013; 445(1-2): 79-87. [DOI:10.1016/j.ijpharm.2013.01.057]
49. Ren J, Shen S, Wang D, Xi Z, Guo L, Pang Z, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials. 2012; 33(11): 3324-33. [DOI:10.1016/j.biomaterials.2012.01.025]
50. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology. 2009; 86(3): 215-23. [DOI:10.1016/j.yexmp.2008.12.004]
51. Knauer N, Meschaninova M, Muhammad S, Hänggi D, Majoral J-P, Kahlert UD, et al. Effects of Dendrimer-microRNA Nanoformulations against Glioblastoma Stem Cells. Pharmaceutics. 2023; 15(3): 968. [DOI:10.3390/pharmaceutics15030968]
52. Zhao J, Zhang B, Shen S, Chen J, Zhang Q, Jiang X, et al. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. Journal of Colloid and Interface Science. 2015; 450: 396-403. [DOI:10.1016/j.jcis.2015.03.019]
53. Bhujbal SV, de Vos P, Niclou SP. Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Advanced drug delivery reviews. 2014; 67: 142-53. [DOI:10.1016/j.addr.2014.01.010]
54. Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. Journal of controlled release. 2008; 132(2): 76-83. [DOI:10.1016/j.jconrel.2008.08.010]
55. Negrulj R, Mooranian A, Chen-Tan N, Al-Sallami HS, Mikov M, Golocorbin-Kon S, et al. Swelling, mechanical strength, and release properties of probucol microcapsules with and without a bile acid, and their potential oral delivery in diabetes. Artificial cells, nanomedicine, and biotechnology. 2016; 44(5): 1290-7. [DOI:10.3109/21691401.2015.1024845]
56. Scott AW, Tyler BM, Masi BC, Upadhyay UM, Patta YR, Grossman R, et al. Intracranial microcapsule drug delivery device for the treatment of an experimental gliosarcoma model. Biomaterials. 2011; 32(10): 2532-9. [DOI:10.1016/j.biomaterials.2010.12.020]
57. Iturrioz-Rodríguez N, Bertorelli R, Ciofani G. Lipid‐Based Nanocarriers for The Treatment of Glioblastoma. Advanced nanobiomed research. 2021; 1(2): 2000054. [DOI:10.1002/anbr.202000054]
58. Fakhoury M, Coussa-Charley M, Al-Salami H, Kahouli I, Prakash S. Use of artificial cell microcapsule containing thalidomide for treating TNBS-induced Crohn's disease in mice. Current Drug Delivery. 2014; 11(1): 146-53. [DOI:10.2174/156720181101140212170025]
59. Ayesha Farhana S, M Shantakumar S, Shyale S, Shalam M, Narasu L. Sustained release of verapamil hydrochloride from sodium alginate microcapsules. Current Drug Delivery. 2010; 7(2): 98-108. [DOI:10.2174/156720110791011819]
60. Borhani-Haghighi M, Razavi S, Khosravizadeh Z. The Application of alginate scaffold in neural tissue engineering. Shefaye Khatam. 2017; 5 (4): 76-86. [DOI:10.18869/acadpub.shefa.5.4.76]
61. Joki T, Machluf M, Atala A, Zhu J, Seyfried NT, Dunn IF, et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nature Biotechnology. 2001; 19(1): 35-9. [DOI:10.1038/83481]
62. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. International journal of nanomedicine. 2011; 6: 2963-79. [DOI:10.2147/IJN.S16923]
63. Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale research letters. 2011; 6(1): 555. [DOI:10.1186/1556-276X-6-555]
64. Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HKF, et al. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chemical communications. 2011; 47(18): 5235-7. [DOI:10.1039/c1cc00075f]
65. Ou Z, Wu B, Xing D, Zhou F, Wang H, Tang Y. Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting. Nanotechnology. 2009; 20(10): 105102. [DOI:10.1088/0957-4484/20/10/105102]
66. Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm. 2008; 358(1-2): 285-91. [DOI:10.1016/j.ijpharm.2008.03.029]
67. Tedesco AC, Silva EPO, Jayme CC, Piva HL, Franchi LP. Cholesterol-rich nanoemulsion (LDE) as a novel drug delivery system to diagnose, delineate, and treat human glioblastoma. Materials Science and Engineering: C. 2021; 123: 111984. [DOI:10.1016/j.msec.2021.111984]
68. Bayanati M, Khosroshahi AG, Alvandi M, Mahboobian MM, Sun F. Fabrication of a Thermosensitive In Situ Gel Nanoemulsion for Nose to Brain Delivery of Temozolomide. J Nanomaterials. 2021; 2021: 11. [DOI:10.1155/2021/1546798]
69. Glaser T, Han I, Wu L, Zeng X. Targeted nanotechnology in glioblastoma multiforme. Frontiers in pharmacology. 2017; 8: 166. [DOI:10.3389/fphar.2017.00166]
70. Mojarad-Jabali S, Farshbaf M, Walker PR, Hemmati S, Fatahi Y, Zakeri-Milani P, et al. An update on actively targeted liposomes in advanced drug delivery to glioma. International Journal of Pharmaceutics. 2021; 602: 120645. [DOI:10.1016/j.ijpharm.2021.120645]
71. Karimi shayan T, Asadi A, Abdolmaleki A. New Drugs and their mechanism in the treatment of epilepsy. Shefaye Khatam. 2022; 10 (2): 104-110.
72. Yang F-Y, Wong T-T, Teng M-C, Liu R-S, Lu M, Liang H-F, et al. Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme. Journal of controlled release. 2012; 160(3): 652-8. [DOI:10.1016/j.jconrel.2012.02.023]
73. Madhankumar AB, Slagle-Webb B, Wang X, Yang QX, Antonetti DA, Miller PA, et al. Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model. Molecular cancer therapeutics. 2009; 8(3): 648-54. [DOI:10.1158/1535-7163.MCT-08-0853]
74. Shein SA, Kuznetsov II, Abakumova TO, Chelushkin PS, Melnikov PA, Korchagina AA, et al. VEGF-and VEGFR2-targeted liposomes for cisplatin delivery to glioma cells. Molecular pharmaceutics. 2016; 13(11): 3712-23. [DOI:10.1021/acs.molpharmaceut.6b00519]
75. Zahednezhad F, Zakeri-Milani P, Shahbazi Mojarrad J, Valizadeh H. The latest advances of cisplatin liposomal formulations: essentials for preparation and analysis. Expert opinion on drug delivery. 2020; 17(4): 523-41. [DOI:10.1080/17425247.2020.1737672]
76. Limasale YDP, Tezcaner A, Özen C, Keskin D, Banerjee S. Epidermal growth factor receptor-targeted immunoliposomes for delivery of celecoxib to cancer cells. International journal of pharmaceutics. 2015; 479(2): 364-73. [DOI:10.1016/j.ijpharm.2015.01.016]
77. Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert opinion on drug delivery. 2009; 6(10): 1017-32. [DOI:10.1517/17425240903167942]
78. Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Advances in Pharmacological and Pharmaceutical Sciences. 2018; 2018. [DOI:10.1155/2018/6847971]
79. Tondro G, Rajabzade G, Mohammadi A, Moradi H, Sahab Negah S. Anti-inflammatory effects of nano- curcumin on a glioblastoma cell line. Shefaye Khatam. 2022; 10 (3): 48-56. [DOI:10.52547/shefa.10.3.48]
80. Barani M, Mirzaei M, Torkzadeh-Mahani M, Lohrasbi-Nejad A, Nematollahi MH. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Materials Science and Engineering: C. 2020; 113: 110975. [DOI:10.1016/j.msec.2020.110975]
81. Kopermsub P, Mayen V, Warin C. Potential use of niosomes for encapsulation of nisin and EDTA and their antibacterial activity enhancement. Food research international. 2011; 44(2): 605-12. [DOI:10.1016/j.foodres.2010.12.011]
82. Wadhwa S, Paliwal R, Paliwal SR, Vyas S. Nanocarriers in ocular drug delivery: an update review. Current pharmaceutical design. 2009, 2724-750. [DOI:10.2174/138161209788923886]
83. Nematollahi MH, Pardakhty A, Torkzadeh-Mahanai M, Mehrabani M, Asadikaram G. Changes in physical and chemical properties of niosome membrane induced by cholesterol: a promising approach for niosome bilayer intervention. RSC advances 2017,7, 49463-472. [DOI:10.1039/C7RA07834J]
84. Sahab-Negah S, Ariakia F, Jalili-Nik M, Afshari AR, Salehi S, Samini F, et al. Curcumin Loaded in Niosomal Nanoparticles Improved the Anti-tumor Effects of Free Curcumin on Glioblastoma Stem-like Cells: an In Vitro Study. Molecular neurobiology. 2020; 57(8): 3391-411. [DOI:10.1007/s12035-020-01922-5]
85. Tondro G, Mohammadi A, Rajabzadeh G, Moradi HR, Negah SS. Niosomal Curcumin Inhibited Gliomagenesis-Related Markers in U87 Cell Line. Research Square; 2023. [DOI:10.21203/rs.3.rs-2817911/v1]
86. De A, Venkatesh N, Senthil M, Sanapalli BKR, Shanmugham R, Karri VVSR. Smart niosomes of temozolomide for enhancement of brain targeting. Nanobiomedicine. 2018; 5: 1849543518805355. [DOI:10.1177/1849543518805355]
87. Alharbi WS, Almughem FA, Almehmady AM, Jarallah SJ, Alsharif WK, Alzahrani NM, et al. Phytosomes as an Emerging Nanotechnology Platform for the Topical Delivery of Bioactive Phytochemicals. Pharmaceutics. 2021; (9).13. [DOI:10.3390/pharmaceutics13091475]
88. Kattyar SL, Patil PS, Patil SV, Kadam SS. Phytosomes and recent research on phytosomal drugs. Asian Journal of Pharmaceutical Analysis. 2022; 12(1): 61-9. [DOI:10.52711/2231-5675.2022.00012]
89. Gaikwad AR, Ahire KD, Gosavi AA, Salunkhe K, Khalkar A. Phytosome as a novel drug delivery system for bioavailability enhancement of phytoconstituents and its applications: a review. Journal of Drug Delivery and Therapeutics. 2021; 11(3): 138-52. [DOI:10.22270/jddt.v11i3.4847]
90. Khanzode MB, Kajale AD, Channawar MA, Gawande SR. Review on phytosomes: A novel drug delivery system. GSC Biological and Pharmaceutical Sciences. 2020; 13(1): 203-11. [DOI:10.30574/gscbps.2020.13.1.0345]
91. Mukherjee S, Baidoo J, Fried A, Atwi D, Dolai S, Boockvar J, et al. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. International Journal of Cancer. 2016; 139(12): 2838-49. [DOI:10.1002/ijc.30398]
92. Madan J, Pandey RS, Jain V, Katare OP, Chandra R, Katyal A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine: Nanotechnology, Biology and Medicine. 2013; 9(4): 492-503. [DOI:10.1016/j.nano.2012.10.003]
93. Neha D, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opinion on Drug Delivery. 2021; 18(9): 1261-90. [DOI:10.1080/17425247.2021.1912008]
94. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry. 2019; 12(7): 908-31. [DOI:10.1016/j.arabjc.2017.05.011]
95. Parmar K, Patel J. Metallic Nanoparticles: Technology Overview and Drug Delivery Applications in Lung Cancer. Handbook of Lung Targeted Drug Delivery Systems: Recent Trends and Clinical Evidences. 2021: 433. [DOI:10.1201/9781003046547-29]
96. Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, et al. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials. 2018; 8(9): 634. [DOI:10.3390/nano8090634]
97. Coccini T, Grandi S, Lonati D, Locatelli C, De Simone U. Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology. 2015; 48: 77-89. [DOI:10.1016/j.neuro.2015.03.006]
98. Afjeh Dana E, Marivani M, Mehravi B, Karimzadeh F, Ashtari K. Development of nanoparticles for drug delivery to the brain. Shefaye Khatam. 2017; 5 (2): 76-87. [DOI:10.18869/acadpub.shefa.5.2.76]
99. Bobyk L, Edouard M, Deman P, Vautrin M, Pernet-Gallay K, Delaroche J, et al. Photoactivation of gold nanoparticles for glioma treatment. Nanomedicine: Nanotechnology, Biology and Medicine. 2013; 9(7): 1089-97. [DOI:10.1016/j.nano.2013.04.007]
100. Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced drug delivery reviews. 2017; 15;109:84-101. [DOI:10.1016/j.addr.2015.12.012]
101. Liu J, Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta biomaterialia. 2017; 55: 13-27. [DOI:10.1016/j.actbio.2017.03.055]
102. Peng L, Liang Y, Zhong X, Liang Z, Tian Y, Li S, et al. Aptamer-conjugated gold nanoparticles targeting epidermal growth factor receptor variant III for the treatment of glioblastoma. International journal of nanomedicine. 2020: 1363-72. [DOI:10.2147/IJN.S238206]
103. Liang P, Shi H, Zhu W, Gui Q, Xu Y, Meng J, et al. Silver nanoparticles enhance the sensitivity of temozolomide on human glioma cells. Oncotarget. 2017; 8(5): 7533-9. [DOI:10.18632/oncotarget.13503]
104. Locatelli E, Naddaka M, Uboldi C, Loudos G, Fragogeorgi E, Molinari V, et al. Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine. 2014; 9(6): 839-49. [DOI:10.2217/nnm.14.1]
105. Urbańska K, Pająk B, Orzechowski A, Sokołowska J, Grodzik M, Sawosz E, et al. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells. Nanoscale research letters. 2015; 10(1): 98. [DOI:10.1186/s11671-015-0823-5]
106. Joshi A, Rastedt W, Faber K, Schultz AG, Bulcke F, Dringen R. Uptake and toxicity of copper oxide nanoparticles in C6 glioma cells. Neurochemical research. 2016; 41: 3004-19. [DOI:10.1007/s11064-016-2020-z]
107. Kukia NR, Abbasi A, Froushani SMA. Copper oxide nanoparticles stimulate cytotoxicity and apoptosis in glial cancer cell line. Dhaka University Journal of Pharmaceutical Sciences. 2018; 17(1): 105-11. [DOI:10.3329/dujps.v17i1.37126]
108. Gharbavi M, Johari B, Ghorbani R, Madanchi H, Sharafi A. Green synthesis of Zn nanoparticles and in situ hybridized with BSA nanoparticles for Baicalein targeted delivery mediated with glutamate receptors to U87-MG cancer cell lines. Applied Organometallic Chemistry. 2023; 37(1): e6926. [DOI:10.1002/aoc.6926]
109. Liu H, Zhang J, Chen X, Du X-S, Zhang J-L, Liu G, et al. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale. 2016; 8(15): 7808-26. [DOI:10.1039/C6NR00147E]
110. Marekova D, Turnovcova K, Sursal TH, Gandhi CD, Jendelova P, Jhanwar-Uniyal M. Potential for treatment of glioblastoma: new aspects of superparamagnetic iron oxide nanoparticles. Anticancer Research. 2020; 40(11): 5989-94. [DOI:10.21873/anticanres.14619]
111. Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Scientific reports. 2020; 10(1): 11292. [DOI:10.1038/s41598-020-68017-y]
112. Foroutan Z, Afshari AR, Sabouri Z, Mostafapour A, Far BF, Jalili‐Nik M, et al. Plant-based synthesis of cerium oxide nanoparticles as a drug delivery system in improving the anticancer effects of free temozolomide in glioblastoma (U87) cells. Ceramics International. 2022; 48(20): 30441-50. [DOI:10.1016/j.ceramint.2022.06.322]
113. Du J, Sun J, Liu X, Wu Q, Shen W, Gao Y, et al. Preparation of C6 cell membrane-coated doxorubicin conjugated manganese dioxide nanoparticles and its targeted therapy application in glioma. European Journal of Pharmaceutical Sciences. 2023; 180: 106338. [DOI:10.1016/j.ejps.2022.106338]
114. Razumov IA, Zav'yalov EL, Troitskii SY, Romashchenko AV, Petrovskii DV, Kuper KE, et al. Selective Cytotoxicity of Manganese Nanoparticles against Human Glioblastoma Cells. Bulletin of Experimental Biology and Medicine. 2017; 163(4): 561-5. [DOI:10.1007/s10517-017-3849-0]
115. Tan X, Kim G, Lee D, Oh J, Kim M, Piao C, et al. A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model. Biomaterials science. 2018; 6(2): 407-17. [DOI:10.1039/C7BM01088E]
116. Ran D, Mao J, Shen Q, Xie C, Zhan C, Wang R, et al. GRP78 enabled micelle-based glioma targeted drug delivery. Journal of Controlled Release. 2017; 255: 120-31. [DOI:10.1016/j.jconrel.2017.03.037]
117. Shi H, Sun S, Xu H, Zhao Z, Han Z, Jia J, et al. Combined delivery of temozolomide and siPLK1 using targeted nanoparticles to enhance temozolomide sensitivity in glioma. International journal of nanomedicine. 2020: 3347-62. [DOI:10.2147/IJN.S243878]
118. Lu L, Zhao X, Fu T, Li K, He Y, Luo Z, et al. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials. 2020; 230: 119666. [DOI:10.1016/j.biomaterials.2019.119666]
119. Liaw K, Sharma R, Sharma A, Salazar S, Appiani La Rosa S, Kannan RM. Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. Journal of controlled release : official journal of the Controlled Release Society. 2021; 329: 434-44. [DOI:10.1016/j.jconrel.2020.12.003]
120. Han S, Zheng H, Lu Y, Sun Y, Huang A, Fei W, et al. A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer. Journal of drug targeting. 2018; 26(1): 86-94. [DOI:10.1080/1061186X.2017.1344849]
121. Uram Ł, Markowicz J, Misiorek M, Filipowicz-Rachwał A, Wołowiec S, Wałajtys-Rode E. Celecoxib substituted biotinylated poly (amidoamine) G3 dendrimer as potential treatment for temozolomide resistant glioma therapy and anti-nematode agent. European Journal of Pharmaceutical Sciences. 2020; 152: 105439. [DOI:10.1016/j.ejps.2020.105439]
122. Lu Y, Han S, Zheng H, Ma R, Ping Y, Zou J, et al. A novel RGDyC/PEG co-modified PAMAM dendrimer-loaded arsenic trioxide of glioma targeting delivery system. International journal of nanomedicine. 2018: 5937-52. [DOI:10.2147/IJN.S175418]
123. Sun X, Chen Y, Zhao H, Qiao G, Liu M, Zhang C, et al. Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma. Drug delivery. 2018; 25(1): 1718-27. [DOI:10.1080/10717544.2018.1494225]
124. Zhu Y, Liang J, Gao C, Wang A, Xia J, Hong C, et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. Journal of Controlled Release. 2021; 330: 641-57. [DOI:10.1016/j.jconrel.2020.12.036]
125. Shi D, Mi G, Shen Y, Webster TJ. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood-brain barrier. Nanoscale. 2019; 11(32): 15057-71. [DOI:10.1039/C9NR03931G]
126. Zhang Y, Zhang L, Hu Y, Jiang K, Li Z, Lin Y-Z, et al. Cell-permeable NF-κB inhibitor-conjugated liposomes for treatment of glioma. Journal of Controlled Release. 2018; 289: 102-13. [DOI:10.1016/j.jconrel.2018.09.016]
127. Wang X, Meng N, Wang S, Zhang Y, Lu L, Wang R, et al. Non-immunogenic, low-toxicity and effective glioma targeting MTI-31 liposomes. Journal of Controlled Release. 2019; 316: 381-92. [DOI:10.1016/j.jconrel.2019.11.005]
128. Kang S, Duan W, Zhang S, Chen D, Feng J, Qi N. Muscone/RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics. 2020; 10(10): 4308. [DOI:10.7150/thno.41322]
129. Zhang Y, Fu X, Jia J, Wikerholmen T, Xi K, Kong Y, et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS applied materials & interfaces. 2020; 12(39): 43408-21. [DOI:10.1021/acsami.0c12042]
130. Säälik P, Lingasamy P, Toome K, Mastandrea I, Rousso-Noori L, Tobi A, et al. Peptide-guided nanoparticles for glioblastoma targeting. Journal of Controlled Release. 2019; 308: 109-18. [DOI:10.1016/j.jconrel.2019.06.018]
131. Sukumar UK, Bose RJ, Malhotra M, Babikir HA, Afjei R, Robinson E, et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials. 2019; 218: 119342. [DOI:10.1016/j.biomaterials.2019.119342]
132. Zhao J, Li D, Ma J, Yang H, Chen W, Cao Y, et al. Increasing the accumulation of aptamer AS1411 and verapamil conjugated silver nanoparticles in tumor cells to enhance the radiosensitivity of glioma. Nanotechnology. 2021; 32(14): 145102. [DOI:10.1088/1361-6528/abd20a]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heydarian S. Drug Nanocarriers as a Potential Therapeutic Strategy in Glioblastoma Multiforme. Shefaye Khatam 2023; 11 (3) :110-126
URL: http://shefayekhatam.ir/article-1-2412-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 3 (Summer 2023) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 46 queries by YEKTAWEB 4660