1. Schrag A, Ben‐Shlomo Y, Brown R, David Marsden C, Quinn N. Young‐onset Parkinson's disease revisited-clinical features, natural history, and mortality. Movement disorders. 1998;13(6):885-94. [ DOI:10.1002/mds.870130605] 2. Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, et al. Impact of environmental risk factors on mitochondrial dysfunction, neuroinflammation, protein misfolding, and oxidative stress in the etiopathogenesis of parkinson's disease. International journal of molecular sciences. 2022;23(18):10808. [ DOI:10.3390/ijms231810808] 3. Avenali M, Blandini F, Cerri S. Glucocerebrosidase defects as a major risk factor for Parkinson's disease. Frontiers in aging neuroscience. 2020;12:97. [ DOI:10.3389/fnagi.2020.00097] 4. Chia SJ, Tan E-K, Chao Y-X. Historical perspective: models of Parkinson's disease. International journal of molecular sciences. 2020;21(7):2464. [ DOI:10.3390/ijms21072464] 5. Eisenhofer G, Siepmann T, Reichmann H. Dopaminergic neurotransmission. Primer on the Autonomic Nervous System: Elsevier; 2023. p. 57-61. [ DOI:10.1016/B978-0-323-85492-4.00139-3] 6. Matt S, Gaskill P. Where is dopamine and how do immune cells see it?: dopamine-mediated immune cell function in health and disease. Journal of Neuroimmune Pharmacology. 2020;15:114-64. [ DOI:10.1007/s11481-019-09851-4] 7. Kajkolah M, Nahumi A, Asgari A, Bayrami A, Asadi Aa, Abdolmaleki A. Protective Effects of Saffron in Nervous System Diseases: A Narrative Review. The Neuroscience Journal of Shefaye Khatam. 2024;12(2):74-86. [ DOI:10.61186/shefa.12.2.74] 8. Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment. Journal of Neurology, Neurosurgery & Psychiatry. 2020;91(8):795-808. [ DOI:10.1136/jnnp-2019-322338] 9. Elsworth JD. Parkinson's disease treatment: Past, present, and future. Journal of neural transmission. 2020;127(5):785-91. [ DOI:10.1007/s00702-020-02167-1] 10. Li W-w. Botanical Therapeutics for Parkinson's Disease. Chinese journal of integrative medicine. 2020;26(6):405-11. [ DOI:10.1007/s11655-020-3096-5] 11. Shirian S, Tahmasebian N, Bakhtiari Moghadm B, Kiani FZ, Amini MR. Anatomical, Physiological, and Pathological Changes in Different Parts of the Brain in Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2024;12(3):103-16. [ DOI:10.61186/shefa.12.3.103] 12. Gao C, Liu J, Tan Y, Chen S. Freezing of gait in Parkinson's disease: pathophysiology, risk factors and treatments. Translational neurodegeneration. 2020;9:1-22. [ DOI:10.1186/s40035-020-00191-5] 13. Chen Y, Sun X, Lin Y, Zhang Z, Gao Y, Wu IX. Non-genetic risk factors for Parkinson's disease: an overview of 46 systematic reviews. Journal of Parkinson's disease. 2021;11(3):919-35. [ DOI:10.3233/JPD-202521] 14. Salari M, Chitsaz A, Etemadifar M, Najafi MR, Mirmosayyeb O, Bemanalizadeh M, et al. Evaluation of non-motor symptoms and their impact on quality of life in patients with Parkinson's disease, Isfahan, Iran. Iranian journal of neurology. 2017;16(3):118. 15. Hosseinzadeh A, Baneshi MR, Sedighi B, Kermanchi J, Haghdoost AA. Estimation of Parkinson's Disease Prevalence and Its Geographical Variation in Iran. Journal of Mazandaran University of Medical Sciences. 2021;31(200):113-24. 16. Nasiri F, Fathi M, kadkhodai M, Rezaei R, Bahrami A. Investigating Functional Independence, Balance, Walking, and Electromyographic Changes in Chronic Stroke Patients Under the Influence of Home-Based Exercises with Functional Overload. The Neuroscience Journal of Shefaye Khatam. 2024;12(3):1-9. [ DOI:10.61186/shefa.12.3.1] 17. Xiao Y, Lau JC, Hemachandra D, Gilmore G, Khan AR, Peters TM. Image guidance in deep brain stimulation surgery to treat Parkinson's disease: A comprehensive review. Transactions on Biomedical Engineering. 2020;68(3):1024-33. [ DOI:10.1109/TBME.2020.3006765] 18. Hariz M. Pallidotomy: a "Phoenix the bird" of surgery for Parkinson's disease? Movement Disorders Clinical Practice. 2022;9(2):170. [ DOI:10.1002/mdc3.13410] 19. Meng Y, Pople CB, Kalia SK, Kalia LV, Davidson B, Bigioni L, et al. Cost-effectiveness analysis of MR-guided focused ultrasound thalamotomy for tremor-dominant Parkinson's disease. Journal of Neurosurgery. 2020;135(1):273-8. [ DOI:10.3171/2020.5.JNS20692] 20. Radder DL, Lígia Silva de Lima A, Domingos J, Keus SH, van Nimwegen M, Bloem BR, et al. Physiotherapy in Parkinson's disease: a meta-analysis of present treatment modalities. Neurorehabilitation and neural repair. 2020;34(10):871-80. [ DOI:10.1177/1545968320952799] 21. Deuschl G, Antonini A, Costa J, Śmiłowska K, Berg D, Corvol JC, et al. European academy of neurology/Movement Disorder Society‐European section guideline on the treatment of Parkinson's disease: I. Invasive therapies. European Journal of Neurology. 2022;29(9):2580-95. [ DOI:10.1111/ene.15386] 22. Church FC. Treatment options for motor and non-motor symptoms of Parkinson's disease. Biomolecules. 2021;11(4):612. [ DOI:10.3390/biom11040612] 23. Rascol O, Fabbri M, Poewe W. Amantadine in the treatment of Parkinson's disease and other movement disorders. The Lancet Neurology. 2021;20(12):1048-56. [ DOI:10.1016/S1474-4422(21)00249-0] 24. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences. 2010;2(4):282-9. [ DOI:10.4103/0975-7406.72127] 25. Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles' physicochemical properties on responses in biological systems. Polymers. 2023;15(7):1596. [ DOI:10.3390/polym15071596] 26. McFarthing K, Rafaloff G, Baptista M, Mursaleen L, Fuest R, Wyse RK, et al. Parkinson's disease drug therapies in the clinical trial pipeline: 2022 update. Journal of Parkinson's disease. 2022;12(4):1073-82. [ DOI:10.3233/JPD-229002] 27. Hall M-FE, Church FC. Integrative medicine and health therapy for Parkinson disease. Topics in Geriatric Rehabilitation. 2020;36(3):176-86. [ DOI:10.1097/TGR.0000000000000278] 28. Baskin J, Jeon JE, Lewis SJ. Nanoparticles for drug delivery in Parkinson's disease. Journal of Neurology. 2021;268(5):1981-94. [ DOI:10.1007/s00415-020-10291-x] 29. Asil SM, Ahlawat J, Barroso GG, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials science. 2020;8(15):4109-28. [ DOI:10.1039/D0BM00809E] 30. Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao C-X. Lipid nanoparticles for drug delivery. Advanced NanoBiomed Research. 2022;2(2):2100109. [ DOI:10.1002/anbr.202100109] 31. Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials. 2023;8(4):282-300. [ DOI:10.1038/s41578-022-00529-7] 32. Loureiro JA, Gomes B, Coelho MA, Carmo Pereira Md, Rocha S. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. Nanomedicine. 2014;9(5):709-22. [ DOI:10.2217/nnm.14.27] 33. Moradi HR, Abdollahinezhad S, Heydarian S. The Role of Exosomes in the Pathogenesis, Diagnosis, and Treatment of Parkinson's and Alzheimer's Diseases. The Neuroscience Journal of Shefaye Khatam. 2024;12(2):87-101. [ DOI:10.61186/shefa.12.2.87] 34. Kaushik AC, Bharadwaj S, Kumar S, Wei D-Q. Nano-particle mediated inhibition of Parkinson's disease using computational biology approach. Scientific reports. 2018;8(1):9169. [ DOI:10.1038/s41598-018-27580-1] 35. Gunay MS, Ozer AY, Erdogan S, Bodard S, Baysal I, Gulhan Z, et al. Development of nanosized, pramipexole-encapsulated liposomes and niosomes for the treatment of Parkinson's disease. Journal of Nanoscience and Nanotechnology. 2017;17(8):5155-67. [ DOI:10.1166/jnn.2017.13799] 36. Azeem A, Talegaonkar S, Negi LM, Ahmad FJ, Khar RK, Iqbal Z. Oil based nanocarrier system for transdermal delivery of ropinirole: a mechanistic, pharmacokinetic and biochemical investigation. International journal of pharmaceutics. 2012;422(1-2):436-44. [ DOI:10.1016/j.ijpharm.2011.10.039] 37. Huang R, Han L, Li J, Ren F, Ke W, Jiang C, et al. Neuroprotection in a 6‐hydroxydopamine‐lesioned Parkinson model using lactoferrin‐modified nanoparticles. The Journal of Gene Medicine. 2009;11(9):754-63. [ DOI:10.1002/jgm.1361] 38. Sikorska M, Lanthier P, Miller H, Beyers M, Sodja C, Zurakowski B, et al. Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson's disease. Neurobiology of aging. 2014;35(10):2329-46. [ DOI:10.1016/j.neurobiolaging.2014.03.032] 39. Choi C-H, Kim S-H, Shanmugam S, Baskaran R, Park J-S, Yong C-S, et al. Relative bioavailability of coenzyme Q10 in emulsion and liposome formulations. Biomolecules & Therapeutics. 2010;18(1):99-105. [ DOI:10.4062/biomolther.2010.18.1.099] 40. Sharma M, Burré J. α-Synuclein in synaptic function and dysfunction. Trends in neurosciences. 2023;46(2):153-66. [ DOI:10.1016/j.tins.2022.11.007] 41. Okuzumi A, Hatano T, Matsumoto G, Nojiri S, Ueno S-i, Imamichi-Tatano Y, et al. Propagative α-synuclein seeds as serum biomarkers for synucleinopathies. Nature medicine. 2023;29(6):1448-55. [ DOI:10.1038/s41591-023-02358-9] 42. Schlich M, Longhena F, Faustini G, O'Driscoll CM, Sinico C, Fadda AM, et al. Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: Evaluation of alpha-synuclein knockdown efficacy. Nano Research. 2017;10:3496-508. [ DOI:10.1007/s12274-017-1561-z] 43. Hernando S, Herran E, Figueiro-Silva J, Pedraz JL, Igartua M, Carro E, et al. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson's disease. Molecular neurobiology. 2018;55:145-55. [ DOI:10.1007/s12035-017-0728-7] 44. Boos GS, Failing K, Colodel EM, Driemeier D, Castro MBd, Bassuino DM, et al. Glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 immunostaining score for the central nervous system of horses with non-suppurative encephalitis and encephalopathies. Frontiers in Veterinary Science. 2021;8:660022. [ DOI:10.3389/fvets.2021.660022] 45. Zhao Y-Z, Li X, Lu C-T, Lin M, Chen L-J, Xiang Q, et al. Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats. Nanomedicine. 2014;10(4):755-64. [ DOI:10.1016/j.nano.2013.10.009] 46. Kundu P, Das M, Tripathy K, Sahoo SK. Delivery of dual drug loaded lipid based nanoparticles across the blood-brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson's disease. American Chemical Society, chemical neuroscience. 2016;7(12):1658-70. [ DOI:10.1021/acschemneuro.6b00207] 47. Tsai Y-M, Jan W-C, Chien C-F, Lee W-C, Lin L-C, Tsai T-H. Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food chemistry. 2011;127(3):918-25. [ DOI:10.1016/j.foodchem.2011.01.059] 48. da Rocha Lindner G, Bonfanti Santos D, Colle D, Gasnhar Moreira EL, Daniel Prediger R, Farina M, et al. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly (lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine. 2015;10(7):1127-38. [ DOI:10.2217/nnm.14.165] 49. Quan K, Liu Q, Wan J-Y, Zhao Y-J, Guo R-Z, Alolga RN, et al. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Scientific Reports. 2015;5(1):8598. [ DOI:10.1038/srep08598] 50. Tsai W-C, Li W-C, Yin H-Y, Yu M-C, Wen H-W. Constructing liposomal nanovesicles of ginseng extract against hydrogen peroxide-induced oxidative damage to L929 cells. Food chemistry. 2012;132(2):744-51. [ DOI:10.1016/j.foodchem.2011.11.026] 51. Kang KS, Yamabe N, Wen Y, Fukui M, Zhu BT. Beneficial effects of natural phenolics on levodopa methylation and oxidative neurodegeneration. Brain research. 2013;1497:1-14. [ DOI:10.1016/j.brainres.2012.11.043] 52. Lu C-W, Lin T-Y, Wang S-J. Quercetin inhibits depolarization-evoked glutamate release in nerve terminals from rat cerebral cortex. Neurotoxicology. 2013;39:1-9. [ DOI:10.1016/j.neuro.2013.07.009] 53. Altaş S, Kızıl G, Kızıl M, Ketani A, Haris PI. Protective effect of Diyarbakır watermelon juice on carbon tetrachloride-induced toxicity in rats. Food and Chemical Toxicology. 2011;49(9):2433-8. [ DOI:10.1016/j.fct.2011.06.064] 54. Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson's disease models. International Journal of Nanomedicine. 2015;10:6757-72. [ DOI:10.2147/IJN.S93918] 55. Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K, et al. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. International journal of nanomedicine. 2012:3667-77. [ DOI:10.2147/IJN.S30428] 56. Frozza RL, Bernardi A, Paese K, Hoppe JB, Silva Td, Battastini AM, et al. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. Journal of biomedical nanotechnology. 2010;6(6):694-703. [ DOI:10.1166/jbn.2010.1161] 57. Lu X, Ji C, Xu H, Li X, Ding H, Ye M, et al. Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress. International Journal of Pharmaceutics. 2009;375(1-2):89-96. [ DOI:10.1016/j.ijpharm.2009.03.021] 58. Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. Journal of Pharmacy and Pharmacology. 2011;63(3):342-51. [ DOI:10.1111/j.2042-7158.2010.01225.x] 59. Wang G, Wang JJ, Yang GY, Du SM, Zeng N, Li DS, et al. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. International journal of nanomedicine. 2012:271-80. [ DOI:10.2147/IJN.S26935] 60. Okonogi S, Riangjanapatee P. Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. International journal of pharmaceutics. 2015;478(2):726-35. [ DOI:10.1016/j.ijpharm.2014.12.002] 61. Ha TVA, Kim S, Choi Y, Kwak H-S, Lee SJ, Wen J, et al. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food chemistry. 2015;178:115-21. [ DOI:10.1016/j.foodchem.2015.01.048] 62. Chow HS, Hakim IA, Vining DR, Crowell JA, Ranger-Moore J, Chew WM, et al. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clinical cancer research. 2005;11(12):4627-33. [ DOI:10.1158/1078-0432.CCR-04-2549] 63. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193. [ DOI:10.3390/molecules25092193] 64. Niu S, Zhang L-K, Zhang L, Zhuang S, Zhan X, Chen W-Y, et al. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson's disease model. Theranostics. 2017;7(2):344. [ DOI:10.7150/thno.16562] 65. Chung T-H, Hsu S-C, Wu S-H, Hsiao J-K, Lin C-P, Yao M, et al. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson's disease. Nanoscale. 2018;10(6):2998-3007. [ DOI:10.1039/C7NR06976F] 66. Zand Z, Khaki PA, Salihi A, Sharifi M, Qadir Nanakali NM, Alasady AA, et al. Cerium oxide NPs mitigate the amyloid formation of α-synuclein and associated cytotoxicity. International journal of nanomedicine. 2019:6989-7000. [ DOI:10.2147/IJN.S220380] 67. Yao X, Guan Y, Wang J, Wang D. Cerium oxide nanoparticles modulating the Parkinson's disease conditions: From the alpha synuclein structural point of view and antioxidant properties of cerium oxide nanoparticles. Heliyon. 2024;10(1). [ DOI:10.1016/j.heliyon.2023.e21789] 68. Ruotolo R, De Giorgio G, Minato I, Bianchi MG, Bussolati O, Marmiroli N. Cerium oxide nanoparticles rescue α-synuclein-induced toxicity in a yeast model of Parkinson's disease. Nanomaterials. 2020;10(2):235. [ DOI:10.3390/nano10020235] 69. Kwon HJ, Kim D, Seo K, Kim YG, Han SI, Kang T, et al. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson's disease. Angewandte Chemie International Edition. 2018;57(30):9408-12. [ DOI:10.1002/anie.201805052] 70. Álvarez YD, Fauerbach JA, Pellegrotti JsV, Jovin TM, Jares-Erijman EA, Stefani FD. Influence of gold nanoparticles on the kinetics of α-synuclein aggregation. Nano letters. 2013;13(12):6156-63. [ DOI:10.1021/nl403490e] 71. Abdolmaleki A, Tamjid M, Hamidi Bagehjan Z, Goodarzifard G, Zohreh R, Asadi A. Neurotransmitters: Types and Molecular Mechanisms of Secretion. The Neuroscience Journal of Shefaye Khatam. 2024;12(2):114-20. [ DOI:10.61186/shefa.12.2.114] 72. An Y, Jiang X, Bi W, Chen H, Jin L, Zhang S, et al. Sensitive electrochemical immunosensor for α-synuclein based on dual signal amplification using PAMAM dendrimer-encapsulated Au and enhanced gold nanoparticle labels. Biosens Bioelectron. 2012;32(1):224-30. [ DOI:10.1016/j.bios.2011.12.017] 73. Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran TB, et al. Biological agents for synthesis of nanoparticles and their applications. Journal of King Saud University-Science. 2022;34(3):101869. [ DOI:10.1016/j.jksus.2022.101869] 74. Kim W, Tripathi M, Kim C, Vardhineni S, Cha Y, Kandi SK, et al. An optimized Nurr1 agonist provides disease-modifying effects in Parkinson's disease models. Nature Communications. 2023;14(1):4283. [ DOI:10.1038/s41467-023-39970-9] 75. Jang Y, Kim W, Leblanc P, Kim C-H, Kim K-S. Potent synthetic and endogenous ligands for the adopted orphan nuclear receptor Nurr1. Experimental & Molecular Medicine. 2021;53(1):19-29. [ DOI:10.1038/s12276-021-00555-5]
|