[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 7, Issue 1 (Winter - 2019) ::
Shefaye Khatam 2019, 7(1): 23-33 Back to browse issues page
Disruption of the Brain Resting State Networks in Parkinsonism
Mahdieh Ghasemi * , Ali Foroutannia
Department of Electrical Engineering, University of Neyshabur, Neyshabur, Iran , m.ghasemi@neyshabur.ac.ir
Abstract:   (395 Views)
Introduction: In the recent years, neuroimaging research on functional Magnetic Resonance Imaging (fMRI) is used in many pathological and mental conditions. The analysis of alterations in the resting state networks (RSN) is an important method for the scrupulous understanding of the function and connectivity changes of the disease in order to provide new diagnostic and therapeutic approaches. In this paper, we studied the resting-state functional MRI (Rs-fMRI) data in Parkinson’s disease (PD) to explore the complex disruption in the RSNs and the functional interactions between them. Materials and Methods: A total Rs-fMRI data of 10 Parkinsonism and 10 healthy people in the 3T-MRI system were considered. Probabilistic independent component analysis (PICA) was used to extract network components. RSNs were identified using spatial correlation with a rest reference template network. Dual regression and randomize technique calculated individual differences between the groups. Results: Group component maps resulted in some main clusters of RSN that significantly overlapped with the reference network, such as the visual cortex, salience network, and supplementary motor area. Individual differences between RSN maps identified temporal, salience and cingulate networks as the main clusters. Conclusion: Most of the previous studies investigated the functional connectivity alterations in PD by seed-based analysis. Here, we employed the data-driven approach based on group PICA to extract and evaluate RSN changes in all related neural networks. Our finding indicates that changes of the functional architecture of the RSNs are associated with PD.
Keywords: Magnetic Resonance Imaging, Neurodegenerative Diseases, Diagnostic Imaging, Brain
Full-Text [PDF 1093 kb]   (123 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Bioinformatics in Neuroscience
References
1. Jankovic J. Parkinson's disease: clinical features and diagnosis.J Neurol Neurosurg Psychiatry. 2008; 79(4): 368-76. [DOI:10.1136/jnnp.2007.131045]
2. Sveinbjornsdottir S. The clinical symptoms of Parkinson's disease. J Neurochem. 2016; 139(1): 318-24. [DOI:10.1111/jnc.13691]
3. Biswal BB. Resting state fMRI: a personal history. Neuroimage. 2012; 62(2): 938-44. [DOI:10.1016/j.neuroimage.2012.01.090]
4. Buckner RL, Krienen FM, Yeo BT. Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci. 2013; 16(7): 832-7. [DOI:10.1038/nn.3423]
5. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003; 100(1): 253-8. [DOI:10.1073/pnas.0135058100]
6. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007; 8(9): 700-11. [DOI:10.1038/nrn2201]
7. Raichle ME. The brain's default mode network. Annu Rev Neurosci. 2015; 38: 433-47. [DOI:10.1146/annurev-neuro-071013-014030]
8. Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, FilippiM. Resting state fMRI in Alzheimer's disease: beyond the default mode network. Neurobiol Aging. 2012; 33(8): 1564-78. [DOI:10.1016/j.neurobiolaging.2011.06.007]
9. Buckner RL, Andrews‐Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008; 1124(1): 1-38. [DOI:10.1196/annals.1440.011]
10. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004; 101(13): 4637-42. [DOI:10.1073/pnas.0308627101]
11. Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum Brain Mapp. 2005; 26(4): 231-9. [DOI:10.1002/hbm.20160]
12. van Eimeren T, Monchi O, Ballanger B, Strafella AP. Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol. 2009; 66(7): 877-83. [DOI:10.1001/archneurol.2009.97]
13. Putcha D, Ross RS, Cronin-Golomb A, Janes AC, Stern CE. Salience and defaultmode network coupling predicts cognition in aging and Parkinson's Disease. J Int Neuropsychol Soc. 2016; 22(2): 205-15. [DOI:10.1017/S1355617715000892]
14. Gorges M, Müller H-P, Lulé D, Pinkhardt EH, Ludolph AC, Kassubek J, et al. To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson's disease. Neurobiol Aging. 2015; 36(4): 1727-35. [DOI:10.1016/j.neurobiolaging.2014.12.026]
15. Tahmasian M, Pasquini L, Scherr M, Meng C, Förster S, Bratec SM, et al. The lower hippocampus global connectivity, the higher its local metabolism in Alzheimer disease. Neurology. 2015; 84(19): 1956-63. [DOI:10.1212/WNL.0000000000001575]
16. Whitwell JL, Przybelski SA, Weigand SD, Ivnik RJ, Vemuri P, Gunter JL, et al. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain. 2009; 132(11): 2932-46. [DOI:10.1093/brain/awp232]
17. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain. 2010; 133(5): 1352-67. [DOI:10.1093/brain/awq075]
18. Tessitore A, Esposito F, Vitale C, Santangelo G, Amboni M, Russo A, et al. Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology. 2012; 79(23): 2226-32. [DOI:10.1212/WNL.0b013e31827689d6]
19. Disbrow E, CarmichaelO, He J, Lanni K, Dressler E, Zhang L, et al. Resting state functional connectivity is associated with cognitive dysfunction in non-demented people with Parkinson's disease. J Parkinsons Dis. 2014; 4(3): 453-65.
20. Wu T, Wang L, Chen Y, ZhaoC, Li K, Chan P. Changes of functional connectivity of the motor network in the resting state in Parkinson's disease. Neurosci Lett. 2009; 460(1): 6-10. [DOI:10.1016/j.neulet.2009.05.046]
21. Amboni M, Tessitore A, Esposito F, Santangelo G, Picillo M, Vitale C, et al. Resting-state functional connectivity associated with mild cognitive impairment in Parkinson's disease. J Neurol. 2015; 262(2): 425-34. [DOI:10.1007/s00415-014-7591-5]
22. Onu M, Badea L, Roceanu A, Tivarus M, Bajenaru O. Increased connectivity between sensorimotor and attentional areas in Parkinson's disease. Neuroradiology. 2015; 57(9): 957-68. [DOI:10.1007/s00234-015-1556-y]
23. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A. 2009; 106(31): 13040-5. [DOI:10.1073/pnas.0905267106]
24. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, et al. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc Natl Acad Sci U S A. 2009; 106(17): 7209-14. [DOI:10.1073/pnas.0811879106]
25. Zuo X-N, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach. Neuroimage. 2010; 49(3): 2163-77. [DOI:10.1016/j.neuroimage.2009.10.080]
26. Jubault T, Brambati SM, Degroot C, KullmannB, Strafella AP, Lafontaine A-L, et al. Regional brain stem atrophy in idiopathic Parkinson's disease detected by anatomical MRI. PloS one. 2009; 4(12): e8247. [DOI:10.1371/journal.pone.0008247]
27. Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement disorder society task force report on the hoehn and yahr staging scale: status and recommendations the movement disorder society task force on rating scales for Parkinson's disease. Mov Disord. 2004; 19(9): 1020-8. [DOI:10.1002/mds.20213]
28. Hoehn MM. Melvin D Yahr. Parkinson: onset, progresión, and mortality. Neurology. 1967; 17: 427-42. [DOI:10.1212/WNL.17.5.427]
29. Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I. Spatial remapping of cortico-striatal connectivity in Parkinson's disease. Cerebral Cortex. 2009; 20(5): 1175-86. [DOI:10.1093/cercor/bhp178]
30. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002; 17(3): 143-55. [DOI:10.1002/hbm.10062]
31. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging. 1999; 18(8): 712-21. [DOI:10.1109/42.796284]
32. Abou Elseoud A, Littow H, Remes J, Starck T, Nikkinen J, Nissilä J, et al. Group-ICA model order highlights patterns of functional brain connectivity. Front Syst Neurosci. 2011; 5: 37. doi.org/10.3389/fnsys.2011.00037. [DOI:10.3389/fnsys.2011.00037]
33. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging. 2004; 23(2): 137-52. [DOI:10.1109/TMI.2003.822821]
34. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005; 360(1457): 1001-13. [DOI:10.1098/rstb.2005.1634]
35. Calhoun VD, Adali T, Pearlson GD, Pekar J. A method for making group inferences from functional MRI data usingindependent component analysis. Hum Brain Mapp. 2001; 14(3): 140-51. [DOI:10.1002/hbm.1048]
36. Chang C, Glover GH. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage. 2009; 47(4): 1448-59. [DOI:10.1016/j.neuroimage.2009.05.012]
37. ThomasonME, Dennis EL, Joshi AA, Joshi SH, Dinov ID, Chang C, et al. Resting-state fMRI can reliably map neural networks in children. Neuroimage. 2011; 55(1): 165-75. [DOI:10.1016/j.neuroimage.2010.11.080]
38. Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, et al. Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp. 2009; 30(12): 3865-86. [DOI:10.1002/hbm.20813]
39. Abou‐Elseoud A, Starck T, Remes J, Nikkinen J, Tervonen O, Kiviniemi V. The effect of model order selection in group PICA. Hum Brain Mapp. 2010; 31(8): 1207-16.
40. Littow H, Abou Elseoud A, Haapea M, Isohanni M, Moilanen I, Mankinen K, et al. Age-related differences in functional nodes of the brain cortex–a high model order group ICA study. Front Syst Neurosci. 2010; 4: 32. doi: 10.3389/fnsys.2010.00032. [DOI:10.3389/fnsys.2010.00032]
41. Veer IM, Beckmann C, Van Tol M-J, Ferrarini L, Milles J, Veltman D, et al. Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front Syst Neurosci. 2010; 4: 41. doi: 10.3389/fnsys.2010.00041. [DOI:10.3389/fnsys.2010.00041]
42. Smith DV, Utevsky AV, Bland AR, Clement N, Clithero JA, Harsch AE, et al. Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches. Neuroimage. 2014; 95: 1-12. [DOI:10.1016/j.neuroimage.2014.03.042]
43. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage. 2014; 90: 449-68. [DOI:10.1016/j.neuroimage.2013.11.046]
44. Griffanti L, Douaud G, Bijsterbosch J, Evangelisti S, Alfaro-Almagro F, Glasser MF, et al. Hand classification of fMRI ICA noise components. Neuroimage. 2017; 154: 188-205. [DOI:10.1016/j.neuroimage.2016.12.036]
45. Peraza LR, Nesbitt D, Lawson RA, Duncan GW, Yarnall AJ, Khoo TK, et al. Intra‐and inter‐network functional alterations in P arkinson's disease with mild cognitive impairment. Hum Brain Mapp. 2017; 38(3): 1702-15. [DOI:10.1002/hbm.23499]
46. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 2011; 23(12): 4022-37. [DOI:10.1162/jocn_a_00077]
47. Baggio HC, Segura B, Sala‐Llonch R, Marti MJ, Valldeoriola F, Compta Y, et al. Cognitive impairment and resting‐state network connectivity in Parkinson's disease. Hum Brain Mapp. 2015; 36(1): 199-212. [DOI:10.1002/hbm.22622]
48. Griffanti L, Rolinski M, Szewczyk-Krolikowski K, Menke RA, Filippini N, Zamboni G, et al. Challenges in the reproducibility of clinical studies with resting state fMRI: An example in early Parkinson's disease. Neuroimage. 2016; 124: 704-13. [DOI:10.1016/j.neuroimage.2015.09.021]
49. Rolinski M, Griffanti L, Szewczyk-Krolikowski K, Menke RA, Wilcock GK, Filippini N, etal. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease. Neuroimage Clin. 2015; 8: 126-32. [DOI:10.1016/j.nicl.2015.04.003]
50. Yao N, Shek‐Kwan Chang R, Cheung C, Pang S, Lau KK, Suckling J, et al. The default mode network is disrupted in Parkinson's disease with visual hallucinations. Hum Brain Mapp. 2014; 35(11): 5658-66. [DOI:10.1002/hbm.22577]
51. Tahmasian M, Eickhoff SB, Giehl K, Schwartz F, Herz DM, Drzezga A, et al. Resting-state functional reorganization in Parkinson's disease: An activation likelihoodestimation meta-analysis. Cortex. 2017; 92: 119-38. [DOI:10.1016/j.cortex.2017.03.016]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemi M, Foroutannia A. Disruption of the Brain Resting State Networks in Parkinsonism. Shefaye Khatam. 2019; 7 (1) :23-33
URL: http://shefayekhatam.ir/article-1-1860-en.html


Volume 7, Issue 1 (Winter - 2019) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 3855