[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
نمایه شده در
    
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 12، شماره 4 - ( پاییز 1403 ) ::
دوره 12 شماره 4 صفحات 110-97 برگشت به فهرست نسخه ها
اثرات نانوپلاستیک‌ها و میکروپلاستیک‌ها بر سلامت سیستم اعصاب محیطی و مرکزی
حمید رضا مرادی* ، سهراب حیدریان ، سحر عبداللهی نژاد
گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران ، hr.moradi@shirazu.ac.ir
چکیده:   (829 مشاهده)
مقدمه: آلودگی میکروپلاستیک و نانوپلاستیک یکی از مهم‌ترین مسائل زیست محیطی دهه اخیر بوده و همواره تهدیدی فزآینده برای سلامت انسان و حیوانات بوده است. کاربرد پلاستیک به دلیل ویژگیهای متعدد آنها مانند پایداری، سختی و قیمت مقرون بصرفه، به تدریج افزایش یافته و در هر صنعتی ضروری شده است. پیش‌بینی می‌شود که تا سال 2050، 33 میلیارد تن پسماند پلاستیکی به سیاره زمین اضافه شود. یکی از نگرانی‌های خاص، وجود این پسماند‌های پلاستیکی در اندازه‌های میکرو و نانو در زیستگاه‌های آبی، خشکی‌ و دریایی است. علاوه بر سمیت ذاتشان، پلاستیکها در محیط به‌عنوان ناقل و منتشرکننده بیماری‌ها و عوامل عفونی و آلاینده‌های محیطی به موجودات زنده عمل می‌کنند. قرارگرفتن در معرض میکروپلاستیک‌ها و نانوپلاستیک‌ها بر استرس اکسیداتیو، سمیت سلولی، آسیب DNA، التهاب، پاسخ ایمنی، سمیت عصبی، اختلال متابولیک، و در نهایت بر سیستم‌های گوارشی، ایمونولوژی، سیستمهای تنفسی، سیستم تولید مثل و سیستم عصبی تأثیر می‌گذارند. در دهه گذشته توجه ویژه‌ای بر روی اثرات نانوپلاستیک‌ها بر روی سیستم اعصاب محیطی و مرکزی به‌عنوان حساس‌ترین سیستم بدن در مواجهه با ذرات پلاستیکی متمرکز شده است. نتیجهگیری: در حال حاضر، هیچ مرور جامعی از اثرات سمیت عصبی در مطالعات مختلف بر روی موجودات زنده و نیز در شرایط محیط کشت سلولی با انواع ذرات، شکل‌ها، اندازه‌های مختلف در غلظت‌ها و مدت‌های مواجهه متفاوت وجود ندارد. خطرات مرتبط با سمیت عصبی ناشی از قرار گرفتن در معرض میکرو و نانوپلاستیکها قابل توجه است.
 
واژه‌های کلیدی: استرس اکسیداتیو، پلاستیک‌ها، التهاب
متن کامل [PDF 1257 kb]   (350 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: تحقیقات پایه در علوم اعصاب
فهرست منابع
1. Gu L, Ozbakkaloglu T. Use of recycled plastics in concrete: A critical review. Waste Management. 2016; 51: 19-42. [DOI:10.1016/j.wasman.2016.03.005]
2. Andrady AL. Microplastics in the marine environment. Marine Pollution Bulletin. 2011; 62(8): 1596-605. [DOI:10.1016/j.marpolbul.2011.05.030]
3. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental science & technology. 2011; 45(21): 9175-9. [DOI:10.1021/es201811s]
4. Birley AW. Plastics materials: properties and applications: Springer Science & Business Media; 2012.
5. Eleftheriadou M, Pyrgiotakis G, Demokritou P. Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Current opinion in biotechnology. 2017; 44: 87-93. [DOI:10.1016/j.copbio.2016.11.012]
6. Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, et al. Nanoscience and nanotechnologies in food industries: opportunities and research trends. Journal of nanoparticle research. 2014; 16: 1-23. [DOI:10.1007/s11051-014-2464-5]
7. North EJ, Halden RU. Plastics and environmental health: the road ahead. Reviews on environmental health. 2013; 28(1): 1-8. [DOI:10.1515/reveh-2012-0030]
8. Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Communications. 2019; 5(1): 1-11. [DOI:10.1057/s41599-018-0212-7]
9. Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental pollution. 2017; 221: 453-8. [DOI:10.1016/j.envpol.2016.12.013]
10. Napper IE, Bakir A, Rowland SJ, Thompson RC. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine pollution bulletin. 2015; 99(1-2): 178-85. [DOI:10.1016/j.marpolbul.2015.07.029]
11. Duis K, Coors A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe. 2016; 28(1): 1-25. [DOI:10.1186/s12302-015-0069-y]
12. Li Y, Liu Z, Yang Y, Jiang Q, Wu D, Huang Y, et al. Effects of nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium nipponense). Environmental Pollution. 2021; 268: 115890. [DOI:10.1016/j.envpol.2020.115890]
13. Galloway TS. Micro-and nano-plastics and human health. Marine anthropogenic litter. 2015: 343-66. [DOI:10.1007/978-3-319-16510-3_13]
14. Yin K, Wang Y, Zhao H, Wang D, Guo M, Mu M, et al. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Science of the total environment. 2021; 774: 145758. [DOI:10.1016/j.scitotenv.2021.145758]
15. Bergmann M, Gutow L, Klages M. Marine anthropogenic litter: Springer Nature; 2015. [DOI:10.1007/978-3-319-16510-3]
16. Prüst M, Meijer J, Westerink RH. The plastic brain: neurotoxicity of micro-and nanoplastics. Particle and fibre toxicology. 2020; 17(1): 1-16. [DOI:10.1186/s12989-020-00358-y]
17. Martin-Folgar R, González-Caballero MC, Torres-Ruiz M, Cañas-Portilla AI, de Alba González M, Liste I, et al. Molecular effects of polystyrene nanoplastics on human neural stem cells. Plos one. 2024; 19(1): e0295816. [DOI:10.1371/journal.pone.0295816]
18. Gholamhosseini A, Zeidi A, Banaee M, Ostovari M, Bagheri S. Investigating the effects of micro and nano plastics on tissue damage in aquatic organisms. Journal of Animal Environment. 2022; 14(3): 305-16.
19. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Science of The Total Environment. 2020; 702: 134455. [DOI:10.1016/j.scitotenv.2019.134455]
20. Sangkham S, Faikhaw O, Munkong N, Sakunkoo P, Arunlertaree C, Chavali M, et al. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Marine Pollution Bulletin. 2022; 181: 113832. [DOI:10.1016/j.marpolbul.2022.113832]
21. Schenker MS. Saving a Dying Sea--The London Convention on Ocean Dumping. Cornell International Law Journal. 1973; 7: 32.
22. Lanctot LR. Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime. Hastings Law Journal. 1972; 24: 67.
23. Alimba CG, Faggio C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology. 2019; 68: 61-74. [DOI:10.1016/j.etap.2019.03.001]
24. Guzzetti E, Sureda A, Tejada S, Faggio C. Microplastic in marine organism: Environmental and toxicological effects. Environmental Toxicology and Pharmacology. 2018; 64: 164-71. [DOI:10.1016/j.etap.2018.10.009]
25. Kontrick AV. Microplastics and human health: Our great future to think about now. Springer; 2018. p. 117-9. [DOI:10.1007/s13181-018-0661-9]
26. Lin L, Zuo L-Z, Peng J-P, Cai L-Q, Fok L, Yan Y, et al. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Science of The Total Environment. 2018; 644: 375-81. [DOI:10.1016/j.scitotenv.2018.06.327]
27. Prata JC, Reis V, da Costa JP, Mouneyrac C, Duarte AC, Rocha-Santos T. Contamination issues as a challenge in quality control and quality assurance in microplastics analytics. Journal of Hazardous Materials. 2021; 403: 123660. [DOI:10.1016/j.jhazmat.2020.123660]
28. Prokić MD, Gavrilović BR, Radovanović TB, Gavrić JP, Petrović TG, Despotović SG, et al. Studying microplastics: Lessons from evaluated literature on animal model organisms and experimental approaches. Journal of Hazardous Materials. 2021; 414: 125476. [DOI:10.1016/j.jhazmat.2021.125476]
29. Sruthy S, Ramasamy EV. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India. Environmental Pollution. 2017; 222: 315-22. [DOI:10.1016/j.envpol.2016.12.038]
30. Biswas S, Bagchi D, Ghosh D. The effects of (micro and Nano) plastics on the human body: nervous system, respiratory system, digestive system, placental barrier, skin, and excretory system. Assessing the Effects of Emerging Plastics on the Environment and Public Health: IGI Global; 2022. p. 148-71. [DOI:10.4018/978-1-7998-9723-1.ch008]
31. Rios Mendoza LM, Balcer M. Microplastics in freshwater environments: A review of quantification assessment. TrAC Trends in Analytical Chemistry. 2019; 113: 402-8. [DOI:10.1016/j.trac.2018.10.020]
32. Revel M, Châtel A, Mouneyrac C. Micro(nano)plastics: A threat to human health? Current Opinion in Environmental Science & Health. 2018; 1: 17-23. [DOI:10.1016/j.coesh.2017.10.003]
33. Rist S, Carney Almroth B, Hartmann NB, Karlsson TM. A critical perspective on early communications concerning human health aspects of microplastics. Science of The Total Environment. 2018; 626: 720-6. [DOI:10.1016/j.scitotenv.2018.01.092]
34. Rose PK, Yadav S, Kataria N, Khoo KS. Microplastics and nanoplastics in the terrestrial food chain: Uptake, translocation, trophic transfer, ecotoxicology, and human health risk. TrAC Trends in Analytical Chemistry. 2023: 117249. [DOI:10.1016/j.trac.2023.117249]
35. Colton JB, Burns BR, Knapp, Frederick D. Plastic Particles in Surface Waters of the Northwestern Atlantic. Science. 1974; 185(4150): 491-7. [DOI:10.1126/science.185.4150.491]
36. Moore CJ. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research. 2008; 108(2): 131-9. [DOI:10.1016/j.envres.2008.07.025]
37. Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, Hernández-León S, et al. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences. 2014; 111(28): 10239-44. [DOI:10.1073/pnas.1314705111]
38. Revel M, Châtel A, Mouneyrac C. Micro (nano) plastics: a threat to human health? Current Opinion in Environmental Science & Health. 2018; 1: 17-23. [DOI:10.1016/j.coesh.2017.10.003]
39. Banikazemi Z, Farshadi M, Rajabi A, Homayoonfal M, Sharifi N, Chaleshtori RS. Nanoplastics: Focus on the role of microRNAs and long non-coding RNAs. Chemosphere. 2022; 308: 136299. [DOI:10.1016/j.chemosphere.2022.136299]
40. Galloway T. Micro-and nano-plastics and human health. Marine Anthropogenic Litter, 343-366. 2015. [DOI:10.1007/978-3-319-16510-3_13]
41. Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environmental pollution. 2013; 178: 483-92. [DOI:10.1016/j.envpol.2013.02.031]
42. Kik K, Bukowska B, Sicińska P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environmental Pollution. 2020; 262: 114297. [DOI:10.1016/j.envpol.2020.114297]
43. Anderson JC, Park BJ, Palace VP. Microplastics in aquatic environments: Implications for Canadian ecosystems. Environmental Pollution. 2016; 218: 269-80. [DOI:10.1016/j.envpol.2016.06.074]
44. Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin. 2011; 62(12): 2588-97. [DOI:10.1016/j.marpolbul.2011.09.025]
45. Ryan PG, Moore CJ, Van Franeker JA, Moloney CL. Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009; 364(1526): 1999-2012. [DOI:10.1098/rstb.2008.0207]
46. Thompson RC. Microplastics in the marine environment: sources, consequences and solutions. Marine anthropogenic litter. 2015: 185-200. [DOI:10.1007/978-3-319-16510-3_7]
47. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, et al. Lost at sea: where is all the plastic? Science. 2004; 304(5672): 838. [DOI:10.1126/science.1094559]
48. Zhu X, Wang C, Duan X, Liang B, Xu EG, Huang Z. Micro-and nanoplastics: A new cardiovascular risk factor? Environment international. 2023; 171: 107662. [DOI:10.1016/j.envint.2022.107662]
49. Karbalaei S, Hanachi P, Walker TR, Cole M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environmental science and pollution research. 2018; 25: 36046-63. [DOI:10.1007/s11356-018-3508-7]
50. Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, Geissen V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the total environment. 2019; 671: 411-20. [DOI:10.1016/j.scitotenv.2019.03.368]
51. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the total environment. 2017; 586: 127-41. [DOI:10.1016/j.scitotenv.2017.01.190]
52. Weithmann N, Möller JN, Löder MG, Piehl S, Laforsch C, Freitag R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science advances. 2018; 4(4): eaap8060. [DOI:10.1126/sciadv.aap8060]
53. Ren Z, Gui X, Xu X, Zhao L, Qiu H, Cao X. Microplastics in the soil-groundwater environment: aging, migration, and co-transport of contaminants-a critical review. Journal of Hazardous Materials. 2021; 419: 126455. [DOI:10.1016/j.jhazmat.2021.126455]
54. Zhao S, Zhang Z, Chen L, Cui Q, Cui Y, Song D, et al. Review on migration, transformation and ecological impacts of microplastics in soil. Applied Soil Ecology. 2022; 176: 104486. [DOI:10.1016/j.apsoil.2022.104486]
55. Bradney L, Wijesekara H, Palansooriya KN, Obadamudalige N, Bolan NS, Ok YS, et al. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International. 2019; 131: 104937. [DOI:10.1016/j.envint.2019.104937]
56. Wang W, Do ATN, Kwon J-H. Ecotoxicological effects of micro- and nanoplastics on terrestrial food web from plants to human beings. Science of The Total Environment. 2022; 834: 155333. [DOI:10.1016/j.scitotenv.2022.155333]
57. Huang D, Chen H, Shen M, Tao J, Chen S, Yin L, et al. Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. Journal of Hazardous Materials. 2022; 438: 129515. [DOI:10.1016/j.jhazmat.2022.129515]
58. Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific reports. 2015; 5(1): 1-10. [DOI:10.1038/srep14340]
59. Smith M, Love DC, Rochman CM, Neff RA. Microplastics in seafood and the implications for human health. Current environmental health reports. 2018; 5: 375-86. [DOI:10.1007/s40572-018-0206-z]
60. Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environmental pollution. 2014; 193: 65-70. [DOI:10.1016/j.envpol.2014.06.010]
61. Miller ME, Hamann M, Kroon FJ. Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PloS one. 2020; 15(10): e0240792. [DOI:10.1371/journal.pone.0240792]
62. Stapleton P. Toxicological considerations of nano-sized plastics. AIMS environmental science. 2019; 6(5): 367. [DOI:10.3934/environsci.2019.5.367]
63. Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. Emergence of nanoplastic in the environment and possible impact on human health. Environmental science & technology. 2019; 53(4): 1748-65. [DOI:10.1021/acs.est.8b05512]
64. Gehr P, Bachofen M, Weibel ER. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology. 1978; 32(2): 121-40. [DOI:10.1016/0034-5687(78)90104-4]
65. Rothen-Rutishauser B, Blank F, Mühlfeld C, Gehr P. In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert opinion on drug metabolism & toxicology. 2008; 4(8): 1075-89. [DOI:10.1517/17425255.4.8.1075]
66. Tondro G, Darvishi MH, Sahab-Negah S, Rajabzadeh G, Mohammadi A, Khaksar Z, et al. Comparative Effects of Curcumin Nano-Niosomes and Free Curcumin on Apoptosis, Intracellular ROS, and STAT3/NF-κB Signaling Pathway in A549 Lung Cancer Cells. Journal of Veterinary Research. 2024; 79: 157-65.
67. Fendall LS, Sewell MA. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Marine pollution bulletin. 2009; 58(8): 1225-8. [DOI:10.1016/j.marpolbul.2009.04.025]
68. Hernandez LM, Yousefi N, Tufenkji N. Are there nanoplastics in your personal care products? Environmental Science & Technology Letters. 2017; 4(7): 280-5. [DOI:10.1021/acs.estlett.7b00187]
69. Adibmoradi M, Moradi H, Hesari A, Adibmoradi G. Study of histomorphometric changes in adult rats skin following injection of PRP and PPP. 2016.
70. Bouwstra J, Pilgram G, Gooris G, Koerten H, Ponec M. New aspects of the skin barrier organization. Skin Pharmacology and Physiology. 2001; 14(Suppl. 1): 52-62. [DOI:10.1159/000056391]
71. Moradi H, Morovvati H, Adibmoradi M, Najafzadeh Varzi H. The Effect of Wheat Sprout extract on skin injury following injection of lead Acetate in rat. Armaghane danesh. 2017; 22(2): 161-75.
72. Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermato-endocrinology. 2009; 1(4): 197-206. [DOI:10.4161/derm.1.4.9501]
73. Sykes EA, Dai Q, Tsoi KM, Hwang DM, Chan WC. Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy. Nature communications. 2014; 5(1): 3796. [DOI:10.1038/ncomms4796]
74. Tondro G, Rajabzade G, Mohammadi A, Moradi H, Sahab Negah S. Anti-Inflammatory Effects of Nano- Curcumin on a Glioblastoma Cell Line. The Neuroscience Journal of Shefaye Khatam. 2022; 10(3): 48-56. [DOI:10.52547/shefa.10.3.48]
75. Thubagere A, Reinhard BM. Nanoparticle-Induced Apoptosis Propagates through Hydrogen-Peroxide-Mediated Bystander Killing: Insights from a Human Intestinal Epithelium In Vitro Model. ACS Nano Journal. 2010; 4(7): 3611-22. [DOI:10.1021/nn100389a]
76. Yoo J-W, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Advanced Drug Delivery Reviews. 2011; 63(14): 1247-56. [DOI:10.1016/j.addr.2011.05.004]
77. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences. 2008; 105(33): 11613-8. [DOI:10.1073/pnas.0801763105]
78. Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Advanced Drug Delivery Reviews. 2001; 50(1): 107-42. [DOI:10.1016/S0169-409X(01)00152-1]
79. Volkheimer G. Hematogenous dissemination of ingested polyvinyl chloride particles. Annals of the New York Academy of Sciences. 1975; 246: 164-71. [DOI:10.1111/j.1749-6632.1975.tb51092.x]
80. Chojnacka K, Mikulewicz M. Bioaccumulation. In: Wexler P, editor. Encyclopedia of Toxicology (Third Edition). Oxford: Academic Press; 2014. p. 456-60. [DOI:10.1016/B978-0-12-386454-3.01039-3]
81. Feng Y, Tu C, Li R, Wu D, Yang J, Xia Y, et al. A systematic review of the impacts of exposure to micro- and nano-plastics on human tissue accumulation and health. Eco-Environment & Health. 2023; 2(4): 195-207. [DOI:10.1016/j.eehl.2023.08.002]
82. Moradi HR, Hajali V, Khaksar Z, Vafaee F, Forouzanfar F, Negah SS. The next step of neurogenesis in the context of Alzheimer's disease. Molecular Biology Reports. 2021; 48(7): 5647-60. [DOI:10.1007/s11033-021-06520-9]
83. Czajka M, Sawicki K, Sikorska K, Popek S, Kruszewski M, Kapka-Skrzypczak L. Toxicity of titanium dioxide nanoparticles in central nervous system. Toxicology in vitro. 2015; 29(5): 1042-52. [DOI:10.1016/j.tiv.2015.04.004]
84. Hajali V, Moradi HR, Sahab Negah S. Neurotransmitters Play as a Key Role in Adult Neurogenesis. The Neuroscience Journal of Shefaye Khatam. 2018; 6(4): 61-74. [DOI:10.29252/shefa.6.4.61]
85. Matysiak M, Kapka-Skrzypczak L, Brzóska K, Gutleb AC, Kruszewski M. Proteomic approach to nanotoxicity. Journal of Proteomics. 2016; 137: 35-44. [DOI:10.1016/j.jprot.2015.10.025]
86. Moradi HR, Taherianfard M, Rashidi M, Javid Z, Hesami SA. Protective Effects of Wheat Sprout on Acrylamide Toxicity in the Hippocampus Structure and Spatial Learning and Memory of Rat. The Neuroscience Journal of Shefaye Khatam. 2023; 11(2): 10-9. [DOI:10.61186/shefa.11.2.10]
87. Xie Y, Wang Y, Zhang T, Ren G, Yang Z. Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. Journal of biomedical science. 2012; 19(1): 1-11. [DOI:10.1186/1423-0127-19-14]
88. Facciolà A, Visalli G, La Maestra S, Ceccarelli M, D'Aleo F, Nunnari G, et al. Carbon nanotubes and central nervous system: Environmental risks, toxicological aspects and future perspectives. Environmental Toxicology and Pharmacology. 2019; 65: 23-30. [DOI:10.1016/j.etap.2018.11.006]
89. Zia S, Islam Aqib A, Muneer A, Fatima M, Atta K, Kausar T, et al. Insights into nanoparticles-induced neurotoxicity and cope up strategies. Frontiers in Neuroscience. 2023; 17: 1127460. [DOI:10.3389/fnins.2023.1127460]
90. Cho W-S, Duffin R, Thielbeer F, Bradley M, Megson IL, MacNee W, et al. Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles. Toxicological Sciences. 2012; 126(2): 469-77. [DOI:10.1093/toxsci/kfs006]
91. Liu S, Li Y, Shang L, Yin J, Qian Z, Chen C, et al. Size-dependent neurotoxicity of micro-and nanoplastics in flowing condition based on an in vitro microfluidic study. Chemosphere. 2022; 303: 135280. [DOI:10.1016/j.chemosphere.2022.135280]
92. Ban M, Shimoda R, Chen J. Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles. Toxicology In Vitro. 2021; 76: 105225. [DOI:10.1016/j.tiv.2021.105225]
93. Jung B-K, Han S-W, Park S-H, Bae J-S, Choi J, Ryu K-Y. Neurotoxic potential of polystyrene nanoplastics in primary cells originating from mouse brain. Neurotoxicology. 2020; 81: 189-96. [DOI:10.1016/j.neuro.2020.10.008]
94. Schirinzi GF, Pérez-Pomeda I, Sanchís J, Rossini C, Farré M, Barceló D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environmental Research. 2017; 159: 579-87. [DOI:10.1016/j.envres.2017.08.043]
95. Chen S, Chen Y, Gao Y, Han B, Wang T, Dong H, et al. Toxic effects and mechanisms of nanoplastics on embryonic brain development using brain organoids model. Science of The Total Environment. 2023; 904: 166913. [DOI:10.1016/j.scitotenv.2023.166913]
96. Shan S, Zhang Y, Zhao H, Zeng T, Zhao X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere. 2022; 298: 134261. [DOI:10.1016/j.chemosphere.2022.134261]
97. Khaksar Z, Morovvati H, Moradi HR, Sahab Negah S. The Role of Extracellular Matrix in Myelination and Oligodendrogenesis of the Central Nervous System. The Neuroscience Journal of Shefaye Khatam. 2019; 7(2): 66-82. [DOI:10.29252/shefa.7.2.66]
98. Rice D, Barone Jr S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environmental health perspectives. 2000; 108(suppl 3): 511-33. [DOI:10.1289/ehp.00108s3511]
99. Sahab Negah S, Khaksar Z, Mohammad Sadeghi S, Erfanimajd N, Modarres Mousavi M, Aligholi H, et al. Effect of nettle root extract on histometrical parameters of cerebral and cerebellar cortices in rat following administration of testosterone. The Neuroscience Journal of Shefaye Khatam. 2015; 3(1): 71-8. [DOI:10.18869/acadpub.shefa.3.1.71]
100. Sarasamma S, Audira G, Siregar P, Malhotra N, Lai Y-H, Liang S-T, et al. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: throwing up alarms of wide spread health risk of exposure. International journal of molecular sciences. 2020; 21(4): 1410. [DOI:10.3390/ijms21041410]
101. Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, et al. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquatic Toxicology. 2018; 195: 49-57. [DOI:10.1016/j.aquatox.2017.12.008]
102. Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends in Neurosciences. 1999; 22(6): 273-80. [DOI:10.1016/S0166-2236(98)01361-7]
103. Cavalcante SFdA, Simas AB, Barcellos MC, de Oliveira VG, Sousa RB, Cabral PAdM, et al. Acetylcholinesterase: the "Hub" for neurodegenerative diseases and chemical weapons convention. Biomolecules. 2020; 10(3): 414. [DOI:10.3390/biom10030414]
104. Morovvati H, Khaksar Z, Sheibani MT, Anbara H, Kafiabad MA, Moradi HR. Effect of aspartame on histological and histometrical structure of prostate gland in adult mice. Qom University of Medical Sciences Journal. 2019; 12(12): 14-27. [DOI:10.29252/qums.12.12.14]
105. Morovvati H, Moradi H, Biabani M. Effect of Hydroalcoholic Extract of Wheat Sprout On Histology and Histometry Structure of Rat's Prostate Exposed to Lead. Iranian South Medical Journal. 2018; 20(6): 540-52.
106. Pearson-Smith JN, Patel M. Antioxidant drug therapy as a neuroprotective countermeasure of nerve agent toxicity. Neurobiology of Disease. 2020; 133: 104457. [DOI:10.1016/j.nbd.2019.04.013]
107. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d'Errico G, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution. 2015; 198: 211-22. [DOI:10.1016/j.envpol.2014.12.021]
108. Luís LG, Ferreira P, Fonte E, Oliveira M, Guilhermino L. Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations. Aquatic Toxicology. 2015; 164: 163-74. [DOI:10.1016/j.aquatox.2015.04.018]
109. Oliveira M, Ribeiro A, Hylland K, Guilhermino L. Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecological Indicators. 2013; 34: 641-7. [DOI:10.1016/j.ecolind.2013.06.019]
110. Oliveira P, Barboza LGA, Branco V, Figueiredo N, Carvalho C, Guilhermino L. Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Müller, 1774): Filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicology and Environmental Safety. 2018; 164: 155-63. [DOI:10.1016/j.ecoenv.2018.07.062]
111. Miranda T, Vieira LR, Guilhermino L. Neurotoxicity, behavior, and lethal effects of cadmium, microplastics, and their mixtures on Pomatoschistus microps juveniles from two wild populations exposed under laboratory conditions-implications to environmental and human risk assessment. International Journal of Environmental Research and Public Health. 2019; 16(16): 2857. [DOI:10.3390/ijerph16162857]
112. Mattsson K, Johnson EV, Malmendal A, Linse S, Hansson L-A, Cedervall T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports. 2017; 7(1): 11452. [DOI:10.1038/s41598-017-10813-0]
113. Chen Q, Gundlach M, Yang S, Jiang J, Velki M, Yin D, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Science of The Total Environment. 2017; 584-585: 1022-31. [DOI:10.1016/j.scitotenv.2017.01.156]
114. Ding J, Huang Y, Liu S, Zhang S, Zou H, Wang Z, et al. Toxicological effects of nano-and micro-polystyrene plastics on red tilapia: are larger plastic particles more harmless? Journal of hazardous materials. 2020; 396: 122693. [DOI:10.1016/j.jhazmat.2020.122693]
115. Ding J, Zhang S, Razanajatovo RM, Zou H, Zhu W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environmental pollution. 2018; 238: 1-9. [DOI:10.1016/j.envpol.2018.03.001]
116. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental health perspectives. 2005; 113(11): 1555-60. [DOI:10.1289/ehp.8006]
117. Sökmen TÖ, Sulukan E, Türkoğlu M, Baran A, Özkaraca M, Ceyhun SB. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio). Neurotoxicology. 2020; 77: 51-9. [DOI:10.1016/j.neuro.2019.12.010]
118. Pitt JA, Kozal JS, Jayasundara N, Massarsky A, Trevisan R, Geitner N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquatic Toxicology. 2018; 194: 185-94. [DOI:10.1016/j.aquatox.2017.11.017]
119. Skjolding LM, Ašmonaitė G, Jølck RI, Andresen TL, Selck H, Baun A, et al. An assessment of the importance of exposure routes to the uptake and internal localisation of fluorescent nanoparticles in zebrafish (Danio rerio), using light sheet microscopy. Nanotoxicology. 2017; 11(3): 351-9. [DOI:10.1080/17435390.2017.1306128]
120. Liu X, Zhao Y, Dou J, Hou Q, Cheng J, Jiang X. Bioeffects of inhaled nanoplastics on neurons and alteration of animal behaviors through deposition in the brain. Nano Letters. 2022; 22(3): 1091-9. [DOI:10.1021/acs.nanolett.1c04184]
121. Yang ZS, Bai YL, Jin CH, Jun N, Zhang R, Yuan G, et al. Evidence on Invasion of Blood, Adipose Tissues, Nervous System and Reproductive System of Mice After a Single Oral Exposure: Nanoplastics versus Microplastics. Biomedical and Environmental Sciences. 2022; 35(11): 1025-37.
122. Liu Q, Chen C, Li M, Ke J, Huang Y, Bian Y, et al. Neurodevelopmental toxicity of polystyrene nanoplastics in Caenorhabditis elegans and the regulating effect of presenilin. ACS Omega Journal. 2020; 5(51): 33170-7. [DOI:10.1021/acsomega.0c04830]
123. Tlili S, Jemai D, Brinis S, Regaya I. Microplastics mixture exposure at environmentally relevant conditions induce oxidative stress and neurotoxicity in the wedge clam Donax trunculus. Chemosphere. 2020; 258: 127344. [DOI:10.1016/j.chemosphere.2020.127344]
124. Iheanacho SC, Odo GE. Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2020; 232: 108741. [DOI:10.1016/j.cbpc.2020.108741]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi H R, Heydarian S, Abdollahinezhad S. Effects of Nanoplastics and Microplastics on the Health of the Peripheral and Central Nervous System. Shefaye Khatam 2024; 12 (4) :97-110
URL: http://shefayekhatam.ir/article-1-2533-fa.html

مرادی حمید رضا، حیدریان سهراب، عبداللهی نژاد سحر. اثرات نانوپلاستیک‌ها و میکروپلاستیک‌ها بر سلامت سیستم اعصاب محیطی و مرکزی. مجله علوم اعصاب شفای خاتم. 1403; 12 (4) :97-110

URL: http://shefayekhatam.ir/article-1-2533-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 4 - ( پاییز 1403 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.11 seconds with 48 queries by YEKTAWEB 4704