

The 2nd International Neuroinflammation Congress and 2nd Student Festival of Neuroscience

Shefa Neuroscience Research Center, Tehran, Iran, 17-19 April, 2018

The Neuroscience Journal of Shefaye Khatam

Volume 6, No. 2, Suppl 1

Poster Presentation

Effects of Hemin on Ca²⁺Influx in Neurons of C57BL/6 Mouse Brain

Hamid Islampoor*

Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Published: 17 April, 2018

Abstract

Excitotoxicity results in a significant increase in Ca²⁺ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca²⁺ concentration. It is correlated with neuronal death induced by Ca²⁺ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of hemin on Ca²⁺ permeability in neurons of C57BL/6 mouse brain examined. Isolated from 1-dayold C57BL/6 mice, were cultured in serum-free media. Cells were maintained in growth medium at 37°C in 95% air/5% CO₂ for 2 weeks in vitro before treatment. Primary neurons were cultured in serum-free media were treated with hemin (0, 12.5, 25, 50, 75,100 μM) for 18 (h). Intensity of calcium fluorescence was reduced in treated cultures with hemin (100, 86, 78.5, 60, 56, 46%, respective to the concentrations stated previously; P<0.05 for all). Hemin increased Ca²⁺ influx in cultured neurons. NMDAR stimulation by hemin increased the activating of NMDARs and Ca²⁺ influx in the cultured neurons. Therefore, hemin is cytotoxic due to increase of intracellular Ca²⁺ influx.

Keywords: Mouse, Hemin, Neurons, Treatment

***Corresponding Author:** Hamid Islampoor

Email: bidgani777@yahoo.com