:: Volume 7, Issue 1 (Winter - 2019) ::
Shefaye Khatam 2019, 7(1): 106-118 Back to browse issues page
Gut Microbiota: An Effective Factor in the Human Brain and Behavior
Sajad Babakhani * , Farzaneh Hosseini
Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran , s_babakhani_s@yahoo.com
Abstract:   (15765 Views)
Introduction: Microorganisms living in the form of symbiosis in the intestine are called gut microbiota. The gut microbiota consists of bacteria, archaea, and eukaryotes. Nonetheless, bacteria are the dominant population of the gut microbiota. The gut microbiota has a beneficial relationship with humans. About 1014 microorganisms inhabit in the intestine, which regulate many physiological functions. In addition to the microbiota effect on the digestive tract, these microorganisms can regulate the function of the brain and the central nervous system. The intestinal nervous system according to the being autonomous and similarity to the central nervous system is known as the second brain. Conclusion: The gut microbiota is an effective factor in the behavior and mood changes and it also prevents the development of the nervous system diseases, such as multiple sclerosis, autism, schizophrenia, Alzheimer, and Parkinson. The gut microbiota regulates the function of the central nervous system through the intestinal nervous system, the production of metabolites, the stimulation of enteroendocrine cells, and the immune system. Inappropriate nutrition, excessive use of antibiotics, stress, anxiety, and depression disturb the balance of microbiota (dysbiosis), which is an important factor in exacerbating the nervous system diseases.
Keywords: Behavior 2. Nervous System 3. Brain 4. Microbiota
Full-Text [PDF 741 kb]   (19329 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Molecular Neurobiology
References
1. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012; 489(7415): 220-30. [DOI:10.1038/nature11550]
2. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017; 474(11): 1823-36. [DOI:10.1042/BCJ20160510]
3. Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 2011; 6(3): 209-40. [DOI:10.1007/s12263-011-0229-7]
4. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016; 535(7610): 65-74. [DOI:10.1038/nature18847]
5. Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther. 2010; 8(4): 435-54. [DOI:10.1586/eri.10.14]
6. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The Impact of microbiota on brain and behavior: mechanisms & therapeutic potential. in: lyte m, cryan jf, editors. microbial endocrinology: the microbiota-gut-brain axis in health and disease. New York, NY: Springer New York; 2014. p. 373-403. [DOI:10.1007/978-1-4939-0897-4_17]
7. Putignani L, Del Chierico F, Petrucca A, Vernocchi P, Dallapiccola B. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res. 2014; 76(1): 2-10. [DOI:10.1038/pr.2014.49]
8. Neufeld KA, Foster JA. Effects of gut microbiota on the brain: implications for psychiatry. J Psychiatry Neurosci. 2009; 34(3): 230-1.
9. Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress. 2017; 7: 124-36. [DOI:10.1016/j.ynstr.2017.03.001]
10. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015; 28(2): 203-9.
11. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014; 34(46): 15490-6. [DOI:10.1523/JNEUROSCI.3299-14.2014]
12. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E. Commensal bacteria play a role in mating preference of drosophila melanogaster. Proc Natl Acad Sci U S A. 2010; 107(46): 20051-6. [DOI:10.1073/pnas.1009906107]
13. Daisley BA, Trinder M, McDowell TW, Welle H, Dube JS, Ali SN, et al. Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a drosophila melanogaster model. Sci Rep. 2017; 7(1): 2703. doi: 10.1038/s41598-017-02806-w. [DOI:10.1038/s41598-017-02806-w]
14. Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011; 14(3): 403-14. [DOI:10.1016/j.cmet.2011.07.012]
15. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017; 5(1): 24. doi: 10.1186/s40168-017-0242-1. [DOI:10.1186/s40168-017-0242-1]
16. Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017; 11: 120. doi: 10.3389/fncel.2017.00120. [DOI:10.3389/fncel.2017.00120]
17. Mu C, Yang Y, Zhu W. Gut microbiota: the brain peacekeeper. Front Microbiol. 2016; 7: 345. doi: 10.3389/fmicb.2016.00345. [DOI:10.3389/fmicb.2016.00345]
18. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012; 13(10): 701-12. [DOI:10.1038/nrn3346]
19. Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A. 2017; 114(40): 10719-24. [DOI:10.1073/pnas.1711233114]
20. Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MMP, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016; 6: 28484. doi: 10.1038/srep28484. [DOI:10.1038/srep28484]
21. Tremlett H, Waubant E. The multiple sclerosis microbiome? Ann Transl Med. 2017; 5(3): 53. doi: 10.21037/atm.2017.01.63. [DOI:10.21037/atm.2017.01.63]
22. Hindson J. Multiple sclerosis: A possible link between multiple sclerosis and gut microbiota. Nat Rev Neurol. 2017; 13(12): 705. doi: 10.1038/nrneurol.2017.142. [DOI:10.1038/nrneurol.2017.142]
23. Tognini P. Gut Microbiota: A potential regulator of neurodevelopment. Front Cell Neurosci. 2017; 11: 25. doi: 10.3389/fncel.2017.00025. [DOI:10.3389/fncel.2017.00025]
24. Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr. 2016; 13: 43. doi.org/10.1186/s12970-016-0155-6. [DOI:10.1186/s12970-016-0155-6]
25. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012; 37(11): 1885-95. [DOI:10.1016/j.psyneuen.2012.03.024]
26. Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016; 39(11): 763-81. [DOI:10.1016/j.tins.2016.09.002]
27. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015; 17(5): 565-76. [DOI:10.1016/j.chom.2015.04.011]
28. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013; 144(7): 1394-401. [DOI:10.1053/j.gastro.2013.02.043]
29. Liu X, Cao S, Zhang X. Modulation of gut microbiota-brain axis by probiotics, prebiotics, and diet. J Agric Food Chem. 2015; 63(36): 7885-95. [DOI:10.1021/acs.jafc.5b02404]
30. Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol Stress. 2016; 4: 23-33. [DOI:10.1016/j.ynstr.2016.03.001]
31. Dinan TG, Cryan JF. Gut-brain axis in 2016: Brain-gut-microbiota axis - mood, metabolism and behaviour. Nat Rev Gastroenterol Hepatol. 2017; 14(2): 69-70. [DOI:10.1038/nrgastro.2016.200]
32. Byrne CS, Chambers ES, Morrison DJ, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes (Lond). 2015; 39(9): 1331-8. [DOI:10.1038/ijo.2015.84]
33. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014; 5: 3611. doi: 10.1038/ncomms4611. [DOI:10.1038/ncomms4611]
34. Holzer P, Farzi A. Neuropeptides and the microbiota-gut-brain axis. Adv Exp Med Biol. 2014; 817: 195-219. [DOI:10.1007/978-1-4939-0897-4_9]
35. Greiner TU, Backhed F. Microbial regulation of GLP-1 and L-cell biology. Mol Metab. 2016; 5(9): 753-8. [DOI:10.1016/j.molmet.2016.05.012]
36. Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci. 2017; 40: 21-49. [DOI:10.1146/annurev-neuro-072116-031347]
37. O'Mahony SM, Tramullas M, Fitzgerald P, Cryan JF. Rodent models of colorectal distension. Curr Protoc Neurosci. 2012; 9(9): 40. 40. doi: 10.1002/0471142301.ns0940s61. [DOI:10.1002/0471142301.ns0940s61]
38. Umbrello G, Esposito S. Microbiota and neurologic diseases: potential effects of probiotics. J Transl Med. 2016; 14(1): 298. doi: 10.1186/s12967-016-1058-7. [DOI:10.1186/s12967-016-1058-7]
39. Bray N. Gut-brain communication: Making friends with microbes. Nat Rev Neurosci. 2016; 17(9): 533. doi: 10.1038/nrn.2016.93. [DOI:10.1038/nrn.2016.93]
40. De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun. 2015; 6: 7735. doi: 10.1038/ncomms8735. [DOI:10.1038/ncomms8735]
41. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011; 141(2): 599-609. [DOI:10.1053/j.gastro.2011.04.052]
42. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012; 64(2): 238-58. [DOI:10.1124/pr.111.005108]
43. Prinsloo S, Lyle RR. The microbiome, gut-brain-axis, and implications for brain health. NeuroRegulation. 2015; 2(4): 158-61. [DOI:10.15540/nr.2.4.158]
44. Montiel-Castro AJ, Gonzalez-Cervantes RM, Bravo-Ruiseco G, Pacheco-Lopez G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci. 2013; 7: 70. doi: 10.3389/fnint.2013.00070. [DOI:10.3389/fnint.2013.00070]
45. Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides. 2012; 46(6): 261-74. [DOI:10.1016/j.npep.2012.08.005]
46. Hyland NP, Cryan JF. Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev Biol. 2016; 417(2): 182-7. [DOI:10.1016/j.ydbio.2016.06.027]
47. Michel L, Prat A. One more role for the gut: microbiota and blood brain barrier. Ann Transl Med. 2016; 4(1): 15. doi: 10.3978/j.issn.2305-5839.2015.10.16.
48. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016; 22(10): 1079-89. [DOI:10.1038/nm.4185]
49. Malinova TS, Dijkstra CD, de Vries HE. Serotonin: a mediator of the gut-brain axis in multiple sclerosis. Mult Scler. 2018; 24(9): 1144-50. [DOI:10.1177/1352458517739975]
50. Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. 2016; 8(1). doi: 10.3390/nu8010056. [DOI:10.3390/nu8010056]
51. Neuman H, Debelius JW, Knight R, Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev. 2015; 39(4): 509-21. [DOI:10.1093/femsre/fuu010]
52. Norris V, Molina F, Gewirtz AT. Hypothesis: bacteria control host appetites. J Bacteriol. 2013; 195(3): 411-6. [DOI:10.1128/JB.01384-12]
53. Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O'Connor G, et al. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol. 2017; 232(9): 2359-72. [DOI:10.1002/jcp.25518]
54. Dinan TG, Cryan JF. Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology. 2016; 42(1): 178-92. [DOI:10.1038/npp.2016.103]
55. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014; 16(4): 495-503. [DOI:10.1016/j.chom.2014.09.001]
56. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015; 161(2): 264-76. [DOI:10.1016/j.cell.2015.02.047]
57. Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015; 63: 1-9. doi: 10.1016/j.jpsychires.
58. Galland L. The gut microbiome and the brain. J Med Food. 2014; 17(12): 1261-72. [DOI:10.1089/jmf.2014.7000]
59. Moret C, Briley M. The importance of norepinephrine in depression. Neuropsychiatr Dis Treat. 2011; 7(1): 9-13.
60. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017; 112(Pt B): 399-412.
61. Braidy N, Grant R. Kynurenine pathway metabolism and neuroinflammatory disease. Neural Regen Res. 2017; 12(1): 39-42. [DOI:10.4103/1673-5374.198971]
62. Davis I, Liu A. What is the tryptophan kynurenine pathway and why is it important to neurotherapy? Expert Rev Neurother. 2015; 15(7): 719-21. [DOI:10.1586/14737175.2015.1049999]
63. Ressler KJ. Amygdala activity, fear, and anxiety: modulation by stress. Biol Psychiatry. 2010; 67(12): 1117-9. [DOI:10.1016/j.biopsych.2010.04.027]
64. Leung K, Thuret S. Gut microbiota: a modulator of brain plasticity and cognitive function in ageing. Healthcare (Basel). 2015; 3(4): 898-916. [DOI:10.3390/healthcare3040898]
65. Chen JJ, Zeng BH, Li WW, Zhou CJ, Fan SH, Cheng K, et al. Effects of gut microbiota on the microRNA and mRNA expression in the hippocampus of mice. Behav Brain Res. 2017; 322(Pt A): 34-41.
66. Parashar A, Udayabanu M. Gut microbiota regulates key modulators of social behavior. Eur Neuropsychopharmacol. 2016; 26(1): 78-91. [DOI:10.1016/j.euroneuro.2015.11.002]
67. Frohlich EE, Farzi A, Mayerhofer R, Reichmann F, Jacan A, Wagner B, et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun. 2016; 56: 140-55. [DOI:10.1016/j.bbi.2016.02.020]
68. Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2015; 6: 1543. doi: 10.3389/fmicb.2015.01543. [DOI:10.3389/fmicb.2015.01543]
69. Amraei S, Hashemi Karouei SM, Babakhani S, Kazemi MJ. Serotyping and antibiotic susceptibility pattern of common bacterial uropathogens in urinary tract infections in koohdasht, lorestan province. Int J Enteric Pathog. 2016; 4(2): e34824. [DOI:10.17795/ijep.34824]
70. Babakhani S, Shokri S, Baharvand M. Antibiotic resistance pattern of Klebsiella pneumoniae isolated from nosocomial infections in Aleshtar hospital, Lorestan province. Report of Health Care. 2015; 1(2): 55-9.
71. Forsythe P, Bienenstock J, Kunze WA. Vagal Pathways for microbiome-brain-gut axis communication. in: lyte m, cryan jf, editors. microbial endocrinology: the microbiota-gut-brain axis in health and disease. New York, NY: Springer New York; 2014. p. 115-33. [DOI:10.1007/978-1-4939-0897-4_5]
72. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017; 179: 223-44. [DOI:10.1016/j.trsl.2016.10.002]
73. Alegre ML, Mannon RB, Mannon PJ. The microbiota, the immune system and the allograft. Am J Transplant. 2014; 14(6): 1236-48. [DOI:10.1111/ajt.12760]
74. Rescigno M. Intestinal microbiota and its effects on the immune system. Cell Microbiol. 2014; 16(7): 1004-13. [DOI:10.1111/cmi.12301]
75. Telesford K, Ochoa-Reparaz J, Kasper LH. Gut commensalism, cytokines, and central nervous system demyelination. J Interferon Cytokine Res. 2014; 34(8): 605-14. [DOI:10.1089/jir.2013.0134]
76. Wang HX, Wang YP. Gut microbiota-brain axis. Chin Med J (Engl). 2016; 129(19): 2373-80. [DOI:10.4103/0366-6999.190667]
77. Moos WH, Faller DV, Harpp DN, Kanara I, Pernokas J, Powers WR, et al. Microbiota and neurological disorders: a gut feeling. Biores Open Access. 2016; 5(1): 137-45. [DOI:10.1089/biores.2016.0010]
78. Erny D, Hrabe de Angelis AL, Prinz M. Communicating systems in the body: how microbiota and microglia cooperate. Immunology. 2017; 150(1): 7-15. [DOI:10.1111/imm.12645]
79. Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013; 14(7): 668-75. [DOI:10.1038/ni.2635]
80. Tian L, Ma L, Kaarela T, Li Z. Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflammation. 2012; 9: 155. doi: 10.1186/1742-2094-9-155. [DOI:10.1186/1742-2094-9-155]
81. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013; 39(2): 372-85. [DOI:10.1016/j.immuni.2013.08.003]
82. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017; 20(2): 145-55. [DOI:10.1038/nn.4476]



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 1 (Winter - 2019) Back to browse issues page