[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 9, Issue 1 (Winter 2020) ::
Shefaye Khatam 2020, 9(1): 14-24 Back to browse issues page
Cortical Coherence Patterns (Functional Connectivity) During Emotional Processing in Bipolar Mood Disorders
Gholamreza Chalabianloo * , Forough Farrokhzad , Zahra Keshtgar
Department of Psychology, Azerbaijan Shahid Madani University, Tabriz, Iran , chalabianloo@azaruniv.ac.ir
Abstract:   (3032 Views)
Introduction: Bipolar mood disorder is one of the most prevalent psychiatric disorders in which the emotional processing deficit is a common feature of the disorder. Due to the role of cortical functions in emotional processing, the purpose of the study was to evaluate the correlations between cortical coherence patterns with positive and negative emotional stimulus processing in patients with bipolar mood disorders. Materials and Methods: To address the goal of the study, EEG cortical coherences were assessed in 40 bipolar patients. The cortical coherences within main frequency bands of brain function were calculated through 19 channels of EEG and neuroguide software across three brain regions (anterior, central, and posterior). Emotional processing was assessed by the emotional differentiation task. Results: Data showed that there are significant correlations between cortical frequency bands, especially alpha and beta bands, with positive and negative emotion processing. Furthermore, multivariate regression analysis revealed that alpha, theta, and beta bands in different regions could predict 94 and 35 percent of variations in positive and negative emotions, respectively. Conclusion: Due to the role of coherence of different regions of the cortex in predicting of emotional processing of patients with bipolar disorder, part of the emotional problems of patients can be modified by presenting appropriate therapeutic strategies, such as psychotherapeutic and pharmacotherapeutic approaches.
Keywords: Patients, Therapeutics, Bipolar Disorder
Full-Text [PDF 1186 kb]   (1313 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Psychiatry
References
1. Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub; 2013.
2. Bourne C, Aydemir Ö, Balanzá‐Martínez V, Bora E, Brissos S, Cavanagh J, et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta‐analysis. Acta Psychiatrica Scandinavica. 2013; 128(3): 149-62. [DOI:10.1111/acps.12133]
3. Wu Y, Li H, Zhou Y, Yu J, Zhang Y, Song M, et al. Sex-specific neural circuits of emotion regulation in the centromedial amygdala. Scientific reports. 2016; 6(1): 1-10. [DOI:10.1038/srep23112]
4. Aparicio A, Santos J, Jiménez‐López E, Bagney A, Rodríguez‐Jiménez R, Sánchez‐Morla E. Emotion processing and psychosocial functioning in euthymic bipolar disorder. Acta Psychiatrica Scandinavica. 2017; 135(4): 339-50 [DOI:10.1111/acps.12706]
5. Van Rheenen TE, Rossell SL. Objective and subjective psychosocial functioning in bipolar disorder: an investigation of the relative importance of neurocognition, social cognition and emotion regulation. Journal of Affective Disorders. 2014; 162: 134-41. [DOI:10.1016/j.jad.2014.03.043]
6. Kerner B. Toward a deeper understanding of the genetics of bipolar disorder. Frontiers in psychiatry. 2015; 6: 105. [DOI:10.3389/fpsyt.2015.00105]
7. Lavagnino L, Cao B, Mwangi B, Wu MJ, Sanches M, Zunta‐Soares GB, et al. Changes in the corpus callosum in women with late‐stage bipolar disorder. Acta Psychiatrica Scandinavica. 2015; 131(6): 458-64. [DOI:10.1111/acps.12397]
8. Dudek D, Siwek M, Zielińska D, Jaeschke R, Rybakowski J. Diagnostic conversions from major depressive disorder into bipolar disorder in an outpatient setting: results of a retrospective chart review. Journal of affective disorders. 2013; 144(1-2): 112-5. [DOI:10.1016/j.jad.2012.06.014]
9. Conus P, Cotton S, Abdel‐Baki A, Lambert M, Berk M, McGorry PD. Symptomatic and functional outcome 12 months after a first episode of psychotic mania: barriers to recovery in a catchment area sample. Bipolar disorders. 2006; 8(3): 221-31. [DOI:10.1111/j.1399-5618.2006.00315.x]
10. Angst J, Adolfsson R, Benazzi F, Gamma A, Hantouche E, Meyer TD, et al. The HCL-32: towards a self-assessment tool for hypomanic symptoms in outpatients. Journal of affective disorders. 2005; 88(2): 217-33. [DOI:10.1016/j.jad.2005.05.011]
11. Shabani A. Strategies for decreasing false negative and positive diagnoses of bipolar disorders. Iranian Journal of Psychiatry and Clinical Psychology. 2009; 15(2): 99-127.
12. de Almeida JRC, Phillips ML. Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives. Biological psychiatry. 2013; 73(2): 111-8. [DOI:10.1016/j.biopsych.2012.06.010]
13. Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cerebral cortex. 2014; 24(11): 2981-90. [DOI:10.1093/cercor/bht154]
14. Keener M, Fournier J, Mullin B, Kronhaus D, Perlman S, LaBarbara E, et al. Dissociable patterns of medial prefrontal and amygdala activity to face identity versus emotion in bipolar disorder. Psychological Medicine. 2012; 42(9): 1913-24. [DOI:10.1017/S0033291711002935]
15. Morawetz C, Bode S, Baudewig J, Kirilina E, Heekeren HR. Changes in effective connectivity between dorsal and ventral prefrontal regions moderate emotion regulation. Cerebral Cortex. 2015; 26(5): 1923-37. [DOI:10.1093/cercor/bhv005]
16. Kringelbach ML, Rolls ET. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Progress in neurobiology. 2004; 72(5): 341-72. [DOI:10.1016/j.pneurobio.2004.03.006]
17. Chen C-H, Lennox B, Jacob R, Calder A, Lupson V, Bisbrown-Chippendale R, et al. Explicit and implicit facial affect recognition in manic and depressed states of bipolar disorder: a functional magnetic resonance imaging study. Biological psychiatry. 2006; 59(1): 31-9. [DOI:10.1016/j.biopsych.2005.06.008]
18. Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience. 2012; 12(2): 241-68. [DOI:10.3758/s13415-011-0083-5]
19. Ho NF, Li Z, Ji F, Wang M, Kuswanto CN, Sum MY, et al. Hemispheric lateralization abnormalities of the white matter microstructure in patients with schizophrenia and bipolar disorder. Journal of psychiatry & neuroscience: JPN. 2017; 42(4): 242. [DOI:10.1503/jpn.160090]
20. Bilderbeck A, Reed ZE, McMahon H, Atkinson L, Price J, Geddes J, et al. Associations between mood instability and emotional processing in a large cohort of bipolar patients. Psychological medicine. 2016; 46(15): 3151-60. [DOI:10.1017/S003329171600180X]
21. Leuchter AF, Uijtdehaage SH, Cook IA, O'Hara R, Mandelkern M. Relationship between brain electrical activity and cortical perfusion in normal subjects. Psychiatry Research: Neuroimaging. 1999; 90(2): 125-40. [DOI:10.1016/S0925-4927(99)00006-2]
22. Leiser SC, Dunlop J, Bowlby MR, Devilbiss DM. Aligning strategies for using EEG as a surrogate biomarker: a review of preclinical and clinical research. Biochemical pharmacology. 2011; 81(12): 1408-21. [DOI:10.1016/j.bcp.2010.10.002]
23. Bowyer SM. Coherence a measure of the brain networks: past and present. Neuropsychiatric Electrophysiology. 2016; 2(1): 1. [DOI:10.1186/s40810-015-0015-7]
24. Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage. 2010; 52(4): 1162-70. [DOI:10.1016/j.neuroimage.2010.02.052]
25. Grieve PG, Emerson RG, Fifer WP, Isler JR, Stark RI. Spatial correlation of the infant and adult electroencephalogram. Clinical Neurophysiology. 2003; 114(9): 1594-608. [DOI:10.1016/S1388-2457(03)00122-6]
26. Depue RA, Zald DH. Biological and environmental processes in nonpsychotic psychopathology: A neurobehavioral perspective. 1993.
27. Kwon JS, Youn T, Jung HY. Right hemisphere abnormalities in major depression: quantitative electroencephalographic findings before and after treatment. Journal of affective disorders. 1996; 40(3): 169-73. [DOI:10.1016/0165-0327(96)00057-2]
28. Lieber AL. Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: II. Interhemispheric measures are abnormal in major depressives and frequency analysis may discriminate certain subtypes. Hillside Journal of Clinical Psychiatry. 1988.
29. Velasques B, Bittencourt J, Diniz C, Teixeira S, Basile LF, Salles JI, et al. Changes in saccadic eye movement (SEM) and quantitative EEG parameter in bipolar patients. Journal of Affective Disorders. 2013; 145(3): 378-85. [DOI:10.1016/j.jad.2012.04.049]
30. Flor-Henry P, Lind JC, Koles ZJ. A source-imaging (low-resolution electromagnetic tomography) study of the EEGs from unmedicated males with depression. Psychiatry Research: Neuroimaging. 2004; 130(2) :191-207. [DOI:10.1016/j.pscychresns.2003.08.006]
31. Grin-Yatsenko VA, Baas I, Ponomarev VA, Kropotov JD. EEG power spectra at early stages of depressive disorders. Journal of Clinical Neurophysiology. 2009; 26(6): 401-6. [DOI:10.1097/WNP.0b013e3181c298fe]
32. Özerdem A, Güntekin B, Tunca Z, Başar E. Brain oscillatory responses in patients with bipolar disorder manic episode before and after valproate treatment. Brain research. 2008; 1235: 98-108. [DOI:10.1016/j.brainres.2008.06.101]
33. Haenschel C, Baldeweg T, Croft RJ, Whittington M, Gruzelier J. Gamma and beta frequency oscillations in response to novel auditory stimuli: a comparison of human electroencephalogram (EEG) data with in vitro models. Proceedings of the National Academy of Sciences. 2000; 97(13): 7645-50. [DOI:10.1073/pnas.120162397]
34. Williams MA, McGlone F, Abbott DF, Mattingley JB. Stimulus‐driven and strategic neural responses to fearful and happy facial expressions in humans. European Journal of Neuroscience. 2008; 27(11): 3074-82. [DOI:10.1111/j.1460-9568.2008.06264.x]
35. Liu X, Hairston J, Schrier M, Fan J. Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews. 2011 Apr 1; 35(5): 1219-36. [DOI:10.1016/j.neubiorev.2010.12.012]
36. Berkman ET, Burklund L, Lieberman MD. Inhibitory spillover: Intentional motor inhibition produces incidental limbic inhibition via right inferior frontal cortex. Neuroimage. 2009 Aug 15; 47(2): 705-12. [DOI:10.1016/j.neuroimage.2009.04.084]
37. Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences. 2010 Jun 15; 107(24): 11020-5. [DOI:10.1073/pnas.1000446107]
38. Townsend JD, Torrisi SJ, Lieberman MD, Sugar CA, Bookheimer SY, Altshuler LL. Frontal-amygdala connectivity alterations during emotion downregulation in bipolar I disorder. Biological psychiatry. 2013 Jan 15; 73(2): 127-35. [DOI:10.1016/j.biopsych.2012.06.030]
39. Zhang S, Wang Y, Deng F, Zhong S, Chen L, Luo X, Qiu S, Chen P, Chen G, Hu H, Lai S. Disruption of superficial white matter in the emotion regulation network in bipolar disorder. NeuroImage: Clinical. 2018 Jan 1; 20: 875-82. [DOI:10.1016/j.nicl.2018.09.024]
40. Cook IA, Hunter AM, Korb AS, Leuchter AF. Do prefrontal midline electrodes provide unique neurophysiologic information in Major Depressive Disorder?. Journal of psychiatric research. 2014 Jun 1; 53: 69-75. [DOI:10.1016/j.jpsychires.2014.01.018]
41. Sassi RB, Brambilla P, Hatch JP, Nicoletti MA, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC. Reduced left anterior cingulate volumes in untreated bipolar patients. Biological psychiatry. 2004 Oct 1; 56(7): 467-75. [DOI:10.1016/j.biopsych.2004.07.005]
42. Kropotov JD. Quantitative EEG, event-related potentials and neurotherapy: Academic Press; 2010.
43. Lee PS, Chen YS, Hsieh JC, Su TP, Chen LF. Distinct neuronal oscillatory responses between patients with bipolar and unipolar disorders: a magnetoencephalographic study. Journal of affective disorders. 2010 Jun 1; 123(1-3): 270-5. [DOI:10.1016/j.jad.2009.08.020]
44. Tas C, Cebi M, Tan O, Hızlı-Sayar G, Tarhan N, Brown EC. EEG power, cordance and coherence differences between unipolar and bipolar depression. Journal of affective disorders. 2015 Feb 1; 172: 184-90. [DOI:10.1016/j.jad.2014.10.001]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chalabianloo G, Farrokhzad F, Keshtgar Z. Cortical Coherence Patterns (Functional Connectivity) During Emotional Processing in Bipolar Mood Disorders. Shefaye Khatam 2020; 9 (1) :14-24
URL: http://shefayekhatam.ir/article-1-1987-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 1 (Winter 2020) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4660