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ABSTRACT

Introduction: Encoding models are used to predict human brain activity in response to
sensory stimuli. The purpose of these models is to explain how sensory information represent
in the brain. Convolutional neural networks trained by images are capable of encoding
magnetic resonance imaging data of humans viewing natural images. Considering the
hemodynamic response function, these networks are capable of estimating the blood oxygen
level dependence of subject viewing videos without any recurrence or feedback mechanism. :
For this purpose, feature map extracted from the convolutional neural network and the concept
of receptive field has been used for the encoding model. The main assumption of this model
is that activity in each voxel encodes a spatially localized region across multiple feature maps
and for each voxel and this area are fixed for all feature maps. Contribution of each feature
map in the activity of each voxel is determined by the corresponding weight. Materials and
Methods: In this study, three healthy volunteers watching a set of videos. This collection
contains images that represent real-life visual experience. MRI and fMRI data are acquired
on a 3 tesla MRI system phase-array surface coil. Results: Data revealed that human visual Key words:
cortex has hierarchical structure. Earlier visual areas have a smaller receptive field size in and 1.

Magnetic Resonance

response to simple feature like edge, whereas higher visual areas have a larger receptive field i Imaging
i 2. Visual Cortex

size and response to more complex features, such as pattern. Conclusion: This model of {3 Brain

video stimuli has a higher interpretation capacity than the previous models.
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