:: Volume 7, Issue 4 (Autumn 2019) ::
Shefaye Khatam 2019, 7(4): 23-29 Back to browse issues page
Alteration in the Expression of Alzheimer's-Related Genes in Rat Hippocampus by Exercise and Morphine Treatments
Hosseinali Sasan * , Azadeh Samareh Gholami , Mohammad Hashemabadi
Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran , hsasa@uk.ac.ir
Abstract:   (5064 Views)
Introduction: Alzheimer's disease is a progressive brain disorder, which slowly eliminates memory and intellectual ability and eventually destroys the ability to carry out the simple tasks. β amyloid plaque and neurofibrillary tangles are two important signatures of this disease, which caused by mutant in Tau, BACE1, and APP genes. They could be important targets for treatment of Alzheimer's disease. Materials and Methods: Twenty-eight adult male Wistar rats weighing 180-240 g were classified into four groups, including control, morphine treatment, exercise treatment, and both morphine and exercise groups. After RNA extraction from hippocampal tissues and cDNA synthesis, Real time PCR for evaluation of different expressions of BACE1 and APP genes were performed. Results: Data revealed that the expressions of BACE1 and APP significantly decreased during morphine and exercise treatment. Conclusion: The present study suggests the possible role of   morphine and exercise in treatment of Alzheimer's disease, possibly due to down-regulation of BACE1 and APP.
Keywords: Alzheimer Disease, Therapeutics, Gene Expression, Exercise, Morphine
Full-Text [PDF 714 kb]   (2636 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Peric A, Annaert W. Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction? Acta Neuropathol. 2015; 129(3): 363-81. [DOI:10.1007/s00401-014-1379-7]
2. Dal Forno G, Palermo MT, Donohue JE, Karagiozis H, Zonderman AB, Kawas CH. Depressive symptoms, sex, and risk for Alzheimer's disease. Ann Neurol. 2005; 57(3): 381-7. [DOI:10.1002/ana.20405]
3. Risacher SL, Saykin AJ. Neuroimaging and other biomarkers for Alzheimer's disease: the changing landscape of early detection. Annu Rev Clin Psychol. 2013; 9: 621-48. [DOI:10.1146/annurev-clinpsy-050212-185535]
4. Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014; 88(4): 640-51. [DOI:10.1016/j.bcp.2013.12.024]
5. Vinters HV. Emerging concepts in Alzheimer's disease. Annual Review of Pathology. Mechanisms of Disease. 2015; 10: 291-319. [DOI:10.1146/annurev-pathol-020712-163927]
6. Khachaturian ZS. Diagnosis of Alzheimer's disease. Archives of Neurology. 1985; 42(11): 1097-105. [DOI:10.1001/archneur.1985.04060100083029]
7. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev. 2001; 81(2): 741-66. [DOI:10.1152/physrev.2001.81.2.741]
8. Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, et al. Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A. 2006; 103(49): 18727-32. [DOI:10.1073/pnas.0606298103]
9. Selkoe DJ. Alzheimer's disease is a synaptic failure. Science. 2002; 298(5594): 789-91. [DOI:10.1126/science.1074069]
10. Rossor M, Fox N, Freeborough P, Harvey R. Clinical features of sporadic and familial Alzheimer's disease. Neurodegeneration. 1996; 5(4): 393-7. [DOI:10.1006/neur.1996.0052]
11. Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J. Analyzing dendritic spine pathology in Alzheimer's disease: problems and opportunities. Acta Neuropathol. 2015; 130(1): 1-19. [DOI:10.1007/s00401-015-1449-5]
12. Manocha GD, Floden AM, Rausch K, Kulas JA, McGregor BA, Rojanathammanee L, et al. APP regulates microglial phenotype in a mouse model of Alzheimer's disease. J Neurosci. 2016; 36(32): 8471-86. [DOI:10.1523/JNEUROSCI.4654-15.2016]
13. Niwa K, Kazama K, Younkin SG, Carlson GA, Iadecola C. Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol Dis. 2002; 9(1): 61-8. [DOI:10.1006/nbdi.2001.0460]
14. Cheon M, Dierssen M, Kim S, Lubec G. Protein expression of BACE1, BACE2 and APP in Down syndrome brains. Amino Acids. 2008; 35(2): 339-43. [DOI:10.1007/s00726-007-0618-9]
15. Association As. 2016 Alzheimer's disease facts and figures. Alzheimers Dement. 2016; 12(4): 459-509. [DOI:10.1016/j.jalz.2016.03.001]
16. Duce JA, Bush AI. Biological metals and Alzheimer's disease: implications for therapeutics and diagnostics. Prog Neurobiol. 2010; 92(1): 1-18. [DOI:10.1016/j.pneurobio.2010.04.003]
17. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med. 2014; 370(4): 322-33. [DOI:10.1056/NEJMoa1304839]
18. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature. 2016; 537(7618): 50-6. [DOI:10.1038/nature19323]
19. Kosten TR, George TP. The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect. 2002; 1(1): 13-20. [DOI:10.1151/spp021113]
20. Sutoo De, Akiyama K. Regulation of brain function by exercise. Neurobiol Dis. 2003; 13(1): 1-14. [DOI:10.1016/S0969-9961(03)00030-5]
21. Devi L, Ohno M. 7, 8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer's disease. Neuropsychopharmacology. 2012; 37(2): 434-44. [DOI:10.1038/npp.2011.191]
22. Vassar R, Kandalepas PC. The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer's disease. Alzheimers Res Ther. 2011; 3(3): 20. doi: 10.1186/alzrt82. [DOI:10.1186/alzrt82]



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 4 (Autumn 2019) Back to browse issues page