[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 8, Issue 2 (Spring 2020) ::
Shefaye Khatam 2020, 8(2): 130-146 Back to browse issues page
The Role of Metals in Neurodegenerative Diseases of the Central Nervous System
Afshin Montazeri , Milad Akhlaghi * , Ahmad Reza Barahimi , Ali Jahanbazi Jahan Abad , Reza Jabbari
Department of Biochemistry, Faculty of Medical Sciences, Yazd University of Medical Sciences, Yazd, Iran , milad70akhlaghi@gmail.com
Abstract:   (6130 Views)
Introduction: Metals have always proved their nature as integral parts of the Earth's crust, water, air and various ecosystems. Rare metals are commonly used as enzyme cofactors and act to regulate the cell functions. The accumulation of metals in the brain indicates the important role of these substances in the nervous system. The lack of these metals is associated with a variety of neurological diseases. On the other hand, enhancement of metal levels may lead to various harmful intracellular events, including oxidative stress, mitochondrial dysfunction, DNA fragmentation, protein falsity, endoplasmic endothelial stress, disturbance in autophagy and induction of apoptosis. To date, adverse effects of metal imbalances with multiple human diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillen-Barre disease, Persian Gulf War syndrome, Huntington's disease, multiple sclerosis, Parkinson's disease, and Wilson's disease, have been reported. The role of some of these metal ions, especially in brain function, is important, which led to the introduction of the term metalloneurochemistry to describe the study of metallic ions in the nervous system at the molecular level. Conclusion: Various metals play an important role in the regulation of multiple vital processes of neurons. Deficiency or elevated levels of any of these metals have harmful effects on the human nervous system, which may contribute to different neurodegenerative diseases.
Keywords: Heavy Metal Poisoning, Nervous System, Nerve Degeneration
Full-Text [PDF 917 kb]   (7980 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Chen P, Parmalee N, Aschner M. Genetic factors and manganese-induced neurotoxicity. Front Genet. 2014; 5: 265. doi: 10.3389/fgene.2014.00265. [DOI:10.3389/fgene.2014.00265]
2. Banci L, Bertini I. Metallomics and the cell: some definitions and general comments. Metallomics and the Cell: Springer. 2013; p. 1-13. [DOI:10.1007/978-94-007-5561-1_1]
3. Waldron KJ, Rutherford JC, Ford D, Robinson NJ. Metalloproteins and metal sensing. Nature. 2009; 460(7257): 823. [DOI:10.1038/nature08300]
4. Canepari M. Dopamine and action potential generation in the axon initial segment. J Physiol. 2019; 597(13): 3251-2. [DOI:10.1113/JP278217]
5. McCaig CD, Song B, Rajnicek AM. Electrical dimensions in cell science. J Cell Sci. 2009; 122(23): 4267-76. [DOI:10.1242/jcs.023564]
6. Allen RP, Picchietti DL, Auerbach M, Cho YW, Connor JR, Earley CJ, et al. Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/Willis-Ekbom disease in adults and children: an IRLSSG task force report. Sleep Medicine. 2018; 41: 27-44. [DOI:10.1016/j.sleep.2017.11.1126]
7. Maity P, Bepari M, Pradhan A, Baral R, Roy S, Choudhury SM. Synthesis and characterization of biogenic metal nanoparticles and its cytotoxicity and anti-neoplasticity through the induction of oxidative stress, mitochondrial dysfunction and apoptosis. Colloids and Surfaces B: Biointerfaces. 2018; 161:111-20. [DOI:10.1016/j.colsurfb.2017.10.040]
8. Cortés-Eslava J, Gómez-Arroyo S, Risueño MC, Testillano PS. The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models. Environmental Pollution. 2018, 240: 77-86. [DOI:10.1016/j.envpol.2018.04.119]
9. Kwakye GF, Jiménez JA, Thomas MG, Kingsley BA, McIIvin M, Saito MA, et al. Heterozygous huntingtin promotes cadmium neurotoxicity and neurodegeneration in striatal cells via altered metal transport and protein kinase C delta dependent oxidative stress and apoptosis signaling mechanisms. Neuro Toxicology. 2019; 70: 48-61. [DOI:10.1016/j.neuro.2018.10.012]
10. Bloom GS, Norambuena A. Alzheimer's disease as a metabolic disorder. OCL. 2018; 25(4): D403. [DOI:10.1051/ocl/2018044]
11. Morahan JM, Pamphlett R. Amyotrophic lateral sclerosis and exposure to environmental toxins: an Australian case-control study. Neuroepidemiology. 2006; 27(3): 130-5. [DOI:10.1159/000095552]
12. Long M, Ghisari M, Kjeldsen L, Wielsøe M, Nørgaard-Pedersen B, Mortensen EL, et al. Autism spectrum disorders, endocrine disrupting compounds, and heavy metals in amniotic fluid: a case-control study. Molecular Autism. 2019; 10(1): 1. [DOI:10.1186/s13229-018-0253-1]
13. Bjorklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J. Metals and Parkinson's disease: mechanisms and biochemical processes. Current Medicinal Chemistry. 2018; 25(19): 2198-214. [DOI:10.2174/0929867325666171129124616]
14. Krishnan N, Felice C, Rivera K, Pappin DJ, Tonks NK. DPM-1001 decreased copper levels and ameliorated deficits in a mouse model of Wilson's disease. Genes & Development. 2018; 32(13-14): 944-52. [DOI:10.1101/gad.314658.118]
15. Deng H, Gao K, Jankovic J. The VPS35 gene and Parkinson's disease. Movement Disorders. 2013; 28(5): 569-75. [DOI:10.1002/mds.25430]
16. Altarelli M, Ben‐Hamouda N, Schneider A, Berger MM. Copper deficiency: causes, manifestations, and treatment. Nutrition in Clinical Practice. 2019; 34(4): 504-13. [DOI:10.1002/ncp.10328]
17. Siotto M, Squitti R. Copper imbalance in Alzheimer's disease: Overview of the exchangeable copper component in plasma and the intriguing role albumin plays. Coordination Chemistry Reviews. 2018; 371: 86-95. [DOI:10.1016/j.ccr.2018.05.020]
18. Lyons TJ, Gralla EB, Valentine JS. Biological chemistry of copper-zinc superoxide dismutase and its link to amyotrophic lateral sclerosis. Metal ions in biological systems. Routledge. 2018; 125-77. [DOI:10.1201/9780203747605-5]
19. Ouzounidou G, Ilias I, Tranopoulou H, Karataglis S. Amelioration of copper toxicity by iron on spinach physiology. Journal of Plant Nutrition. 1998; 21(10): 2089-101. [DOI:10.1080/01904169809365546]
20. Squitti R, Mendez A, Ricordi C, Siotto M, Goldberg R. Copper in glucose intolerance, cognitive decline, and Alzheimer disease. Alzheimer Disease & Associated Disorders. 2019; 33(1): 77-85. [DOI:10.1097/WAD.0000000000000280]
21. Li S, Kerman K. Electrochemical detection of interaction between copper (II) and Peptides related to pathological α-synuclein mutants. Analytical Chemistry. 2019; 91(6): 3818-26. [DOI:10.1021/acs.analchem.8b03612]
22. Giampietro R, Spinelli F, Contino M, Colabufo NA. The pivotal role of copper in neurodegeneration: a new strategy for the therapy of neurodegenerative disorders. Molecular Pharmaceutics. 2018; 15(3): 808-20. [DOI:10.1021/acs.molpharmaceut.7b00841]
23. Sigurdsson EM, Brown DR, Alim MA, Scholtzova H, Carp R, Meeker HC, et al. Copper chelation delays the onset of prion disease. Journal of Biological Chemistry. 2003; 278(47): 46199-202. [DOI:10.1074/jbc.C300303200]
24. Perera WSS, Hooper NM. Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Current Biology. 2001; 11(7): 519-23. [DOI:10.1016/S0960-9822(01)00147-6]
25. Kozlowski H, Luczkowski M, Remelli M, Valensin D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases). Coordination Chemistry Reviews. 2012; 256(19-20): 2129-41. [DOI:10.1016/j.ccr.2012.03.013]
26. Sánchez-López C, Rossetti G, Quintanar L, Carloni P. Structural determinants of the prion protein N-terminus and its adducts with copper ions. International Journal of Molecular Sciences. 2019; 20(1): 18. [DOI:10.3390/ijms20010018]
27. Huang X-Y, Deng F, Yamaji N, Pinson SR, Fujii-Kashino M, Danku J, et al. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nature Communications. 2016; 7: 12138. [DOI:10.1038/ncomms12138]
28. Bandmann O, Weiss KH, Kaler SG. Wilson's disease and other neurological copper disorders. The Lancet Neurology. 2015; 14(1): 103-13. [DOI:10.1016/S1474-4422(14)70190-5]
29. Selvaraj R, Kaliaperumal S, Kumari P. Kayser fleischer ring: A strong clinical indicator of neuro-wilson. TNOA Journal of Ophthalmic Science and Research. 2017; 55(4): 307-9. [DOI:10.4103/tjosr.tjosr_39_17]
30. Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015; 24(4): 325-40. [DOI:10.5607/en.2015.24.4.325]
31. Hametner S, Wimmer I, Haider L, Pfeifenbring S, Brück W, Lassmann H. Iron and neurodegeneration in the multiple sclerosis brain. Annals of Neurology. 2013; 74(6): 848-61. [DOI:10.1002/ana.23974]
32. Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms. Robello E, Galatro A, Puntarulo S. Iron and its catalytic properties on radical generation: role of chelators on the labile iron pool (LIP). 2019; p. 39-52. [DOI:10.1002/9781119468677.ch2]
33. Levi S, Tiranti V. Neurodegeneration with brain iron accumulation disorders: valuable models aimed at understanding the pathogenesis of iron deposition. Pharmaceuticals (Basel). 2019; 12(1): 27. doi: 10.3390/ph12010027. [DOI:10.3390/ph12010027]
34. Gong N-J, Dibb R, Bulk M, van der Weerd L, Liu C. Imaging beta amyloid aggregation and iron accumulation in Alzheimer's disease using quantitative susceptibility mapping MRI. NeuroImage. 2019; 191: 176-85. [DOI:10.1016/j.neuroimage.2019.02.019]
35. Agrawal S, Fox J, Thyagarajan B, Fox JH. Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radic Biol Med. 2018; 120: 317-29. [DOI:10.1016/j.freeradbiomed.2018.04.002]
36. Gajowiak A, Styś A, Starzyński RR, Bednarz A, Lenartowicz M, Staroń R, et al. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis. Front Mol Neurosci. 2016; 8: 82. doi: 10.3389/fnmol.2015.00082. [DOI:10.3389/fnmol.2015.00082]
37. Bhattacharya PT, Misra SR, Hussain M. Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica (Cairo). 2016; 2016. doi: 10.1155/2016/5464373. [DOI:10.1155/2016/5464373]
38. Kwakye G, Paoliello M, Mukhopadhyay S, Bowman A, Aschner M. Manganese-induced parkinsonism and Parkinson's disease: shared and distinguishable features. Int J Environ Res Public Health. 2015; 12(7): 7519-40. [DOI:10.3390/ijerph120707519]
39. Bouabid S, Tinakoua A, Lakhdar‐Ghazal N, Benazzouz A. Manganese neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J Neurochem. 2016; 136(4): 677-91. [DOI:10.1111/jnc.13442]
40. Pittman JK. Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol. 2005; 167(3): 733-42. [DOI:10.1111/j.1469-8137.2005.01453.x]
41. Zhang J, Cao R, Cai T, Aschner M, Zhao F, Yao T, et al. The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotox Res. 2013; 24(4): 478-90. [DOI:10.1007/s12640-013-9392-5]
42. Dieter HH, Bayer TA, Multhaup G. Environmental copper and manganese in the pathophysiology of neurologic diseases (Alzheimer's disease and Manganism). Acta Hydrochimica et Hydrobiologica. 2005; 33(1): 72-8. [DOI:10.1002/aheh.200400556]
43. McMillan G. Is electric arc welding linked to manganism or Parkinson's disease? Toxicol Rev. 2005; 24(4): 237-57. [DOI:10.2165/00139709-200524040-00004]
44. Racette BA. Manganism in the 21st century: The hanninen lecture. Neurotoxicology. 2014; 45: 201-7. [DOI:10.1016/j.neuro.2013.09.007]
45. Remelli M, Peana M, Medici S, Ostrowska M, Gumienna-Kontecka E, Zoroddu MA. Manganism and Parkinson's disease: Mn (II) and Zn (II) interaction with a 30-amino acid fragment. Dalton Trans. 2016; 45(12): 5151-61. [DOI:10.1039/C6DT00184J]
46. Smith MR, Fernandes J, Go YM, Jones DP. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun. 2017; 482(3): 388-98. [DOI:10.1016/j.bbrc.2016.10.126]
47. Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG. Protein kinase Cδ is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther. 2005; 313(1): 46-55. [DOI:10.1124/jpet.104.078469]
48. Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, et al. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology. 2018; 64: 204-18. [DOI:10.1016/j.neuro.2017.05.009]
49. Liang G, Qin H, Zhang Le, Ma S, Huang X, Lv Y, et al. Effects of chronic manganese exposure on the learning and memory of rats by observing the changes in the hippocampal cAMP signaling pathway. Food Chem Toxicol. 2015; 83: 261-7. [DOI:10.1016/j.fct.2015.07.005]
50. Alaimo A, Gorojod RM, Kotler ML. The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells. Neurochem Int. 2011; 59(2): 297-308. [DOI:10.1016/j.neuint.2011.06.001]
51. Kitazawa M, Anantharam V, Yang Y, Hirata Y, Kanthasamy A, Kanthasamy AG. Activation of protein kinase Cδ by proteolytic cleavage contributes to manganese-induced apoptosis in dopaminergic cells: protective role of Bcl-2. Biochemical pharmacology. 2005; 69(1): 133-46. [DOI:10.1016/j.bcp.2004.08.035]
52. Choi CJ, Anantharam V, Martin DP, Nicholson EM, Richt JA, Kanthasamy A, et al. Manganese upregulates cellular prion protein and contributes to altered stabilization and proteolysis: relevance to role of metals in pathogenesis of prion disease. Toxicol Sci. 2010; 115(2): 535-46. [DOI:10.1093/toxsci/kfq049]
53. Xu B, Wu S-W, Lu C-W, Deng Y, Liu W, Wei Y-G, et al. Oxidative stress involvement in manganese-induced alpha-synuclein oligomerization in organotypic brain slice cultures. Toxicology. 2013; 305: 71-8. [DOI:10.1016/j.tox.2013.01.006]
54. Stephenson AP, Schneider JA, Nelson BC, Atha DH, Jain A, Soliman KF, et al. Manganese-induced oxidative DNA damage in neuronal SH-SY5Y cells: attenuation of thymine base lesions by glutathione and N-acetylcysteine. Toxicol Lett. 2013; 218(3): 299-307. [DOI:10.1016/j.toxlet.2012.12.024]
55. Kim J, Pajarillo E, Rizor A, Son DS, Lee J, Aschner M, et al. LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. PloS One. 2019; 14(1): e0210248. [DOI:10.1371/journal.pone.0210248]
56. Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J. Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci. 2008; 107(1): 156-64. [DOI:10.1093/toxsci/kfn213]
57. Stamelou M, Tuschl K, Chong W, Burroughs AK, Mills PB, Bhatia KP, et al. Dystonia with brain manganese accumulation resulting from SLC30A10 mutations: a new treatable disorder. Mov Disord. 2012; 27(10): 1317-22. [DOI:10.1002/mds.25138]
58. Lucchini RG, Martin CJ, Doney BC. From manganism to manganese-induced parkinsonism: a conceptual model based on the evolution of exposure. Neuromolecular Med. 2009; 11(4): 311-21. [DOI:10.1007/s12017-009-8108-8]
59. Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y, Aschner M. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol. 2009; 240(2): 219-25. [DOI:10.1016/j.taap.2009.07.004]
60. Dobson AW, Erikson KM, Aschner M. Manganese neurotoxicity. Ann N Y Acad Sci. 2004: 1012: 115-28. [DOI:10.1196/annals.1306.009]
61. Lee SR. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid Med Cell Longev. 2018; 2018. doi: 10.1155/2018/9156285. [DOI:10.1155/2018/9156285]
62. Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: A brief overview. J Inorg Biochem. 2019; 195: 120-9. [DOI:10.1016/j.jinorgbio.2019.03.013]
63. Afolabi OB, Balogun BD, Oloyede OI, Akinyemi AJ. Zinc and neurodegenerative disorders. handbook of research on critical examinations of neurodegenerative disorders. IGI Global. 2019; p. 176-93. [DOI:10.4018/978-1-5225-5282-6.ch008]
64. Qi Z, Liu KJ. The interaction of zinc and the blood-brain barrier under physiological and ischemic conditions. Toxicol Appl Pharmacol. 2019; 364: 114-9. [DOI:10.1016/j.taap.2018.12.018]
65. Paoletti P, Vergnano A, Barbour B, Casado M. Zinc at glutamatergic synapses. Neuroscience. 2009; 158(1): 126-36. [DOI:10.1016/j.neuroscience.2008.01.061]
66. Portaro S, Naro A, Giorgianni R, Mazzon E, Calabrò RS. Heavy metal intoxication and amyotrophic lateral sclerosis: causal or casual relationship? Aging Clinical and Experimental Research. 2019: 1-2. [DOI:10.1007/s40520-019-01177-8]
67. Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, et al. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death & Disease. 2018; 9(3): 348. [DOI:10.1038/s41419-018-0379-2]
68. Peters TL, Beard JD, Umbach DM, Allen K, Keller J, Mariosa D, et al. Blood levels of trace metals and amyotrophic lateral sclerosis. Neurotoxicology. 2016; 54: 119-26. [DOI:10.1016/j.neuro.2016.03.022]
69. Roos PM. Metals and motor neuron disease. Biometals in Neurodegenerative Diseases. 2017; 175-93. [DOI:10.1016/B978-0-12-804562-6.00010-5]
70. Bocca B, Alimonti A, Senofonte O, Pino A, Violante N, Petrucci F, et al. Metal changes in CSF and peripheral compartments of parkinsonian patients. Journal of the Neurological Sciences. 2006; 248(1-2): 23-30. [DOI:10.1016/j.jns.2006.05.007]
71. Oh J, Shin SH, Choi R, Kim S, Park HD, Kim SY, et al. Assessment of 7 trace elements in serum of patients with nontuberculous mycobacterial lung disease. J Trace Elem Med Biol. 2019; 53: 84-90. [DOI:10.1016/j.jtemb.2019.02.004]
72. Dickerson AS, Hansen J, Specht AJ, Gredal O, Weisskopf MG. Population-based study of amyotrophic lateral sclerosis and occupational lead exposure in Denmark. Occup Environ Med. 2019; 76(4): 208-14. [DOI:10.1136/oemed-2018-105469]
73. Royé D, Zarrabeitia MT, Riancho J, Santurtún A. A time series analysis of the relationship between apparent temperature, air pollutants and ischemic stroke in Madrid, Spain. Environmental Research. 2019; 173: 349-58. [DOI:10.1016/j.envres.2019.03.065]
74. Oggiano R, Solinas G, Forte G, Bocca B, Farace C, Pisano A, et al. Trace elements in ALS patients and their relationships with clinical severity. Chemosphere. 2018; 197: 457-66. [DOI:10.1016/j.chemosphere.2018.01.076]
75. Agah E, Saleh F, Moghaddam HS, Saghazadeh A, Tafakhori A, Rezaei N. CSF and blood biomarkers in amyotrophic lateral sclerosis: protocol for a systematic review and meta-analysis. Systematic Reviews. 2018; 7(1): 237. [DOI:10.1186/s13643-018-0913-4]
76. Varikasuvu SR, Prasad S, Kothapalli J, Manne M. Brain selenium in Alzheimer's disease (BRAIN SEAD study): a systematic review and meta-analysis. Biol Trace Elem Res. 2019; 189(2): 361-9. [DOI:10.1007/s12011-018-1492-x]
77. Loef M, Schrauzer GN, Walach H. Selenium and Alzheimer's disease: a systematic review. Journal of Alzheimer's Disease. 2011; 26(1): 81-104. [DOI:10.3233/JAD-2011-110414]
78. Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics. 2015; 7(8): 1213-28. [DOI:10.1039/C5MT00075K]
79. Zafar KS, Siddiqui A, Sayeed I, Ahmad M, Salim S, Islam F. Dose‐dependent protective effect of selenium in rat model of Parkinson's disease: neurobehavioral and neurochemical evidences. Journal of Neurochemistry. 2003; 84(3): 438-46. [DOI:10.1046/j.1471-4159.2003.01531.x]
80. Chen J, Berry MJ. Selenium and selenoproteins in the brain and brain diseases. Journal of Neurochemistry. 2003; 86(1): 1-12. [DOI:10.1046/j.1471-4159.2003.01854.x]
81. Sanmartín C, Plano D, Font M, Palop JA. Selenium and clinical trials: new therapeutic evidence for multiple diseases. Current Medicinal Chemistry. 2011; 18(30): 4635-50. [DOI:10.2174/092986711797379249]
82. Burk R, Hill K, Motley A, Winfrey V, Kurokawa S, Mitchell S, et al. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and within the brain to protect against neurodegeneration (374.6). The FASEB Journal. 2014; 28(1): 374-6. [DOI:10.1096/fj.14-252874]
83. Ince P, Shaw P, Candy J, Mantle D, Tandon L, Ehmann W, et al. Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neuroscience Letters. 1994; 182(1): 87-90. [DOI:10.1016/0304-3940(94)90213-5]
84. Bergomi M, Vinceti M, Nacci G, Pietrini V, Brätter P, Alber D, et al. Environmental exposure to trace elements and risk of amyotrophic lateral sclerosis: a population-based case-control study. Environmental Research. 2002; 89(2): 116-23. [DOI:10.1006/enrs.2002.4361]
85. Vinceti M, Nacci G, Rocchi E, Cassinadri T, Vivoli R, Marchesi C, et al. Mortality in a population with long-term exposure to inorganic selenium via drinking water. Journal of Clinical Epidemiology. 2000; 53(10): 1062-8. [DOI:10.1016/S0895-4356(00)00233-X]
86. Vinceti M, Ballotari P, Steinmaus C, Malagoli C, Luberto F, Malavolti M, et al. Long-term mortality patterns in a residential cohort exposed to inorganic selenium in drinking water. Environmental Research. 2016; 150: 348-56. [DOI:10.1016/j.envres.2016.06.009]
87. Seilhean D, Cazeneuve C, Thuriès V, Russaouen O, Millecamps S, Salachas F, et al. Accumulation of TDP-43 and α-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathologica. 2009; 118(4): 561-73. [DOI:10.1007/s00401-009-0545-9]
88. Silani V, Messina S, Poletti B, Morelli C, Doretti A, Ticozzi N, et al. The diagnosis of Amyotrophic lateral sclerosis in 2010. Archives Italiennes de Biologie. 2011; 149(1): 5-27.
89. Ling S-C, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013; 79(3): 416-38. [DOI:10.1016/j.neuron.2013.07.033]
90. Chen H-J, Anagnostou G, Chai A, Withers J, Morris A, Adhikaree J, et al. Characterization of the properties of a novel mutation in VAPB in familial amyotrophic lateral sclerosis. Journal of Biological Chemistry. 2010; 285(51): 40266-81. [DOI:10.1074/jbc.M110.161398]
91. McAllum EJ, Lim NK-H, Hickey JL, Paterson BM, Donnelly PS, Li Q-X, et al. Therapeutic effects of CuII (atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2013; 14(7-8): 586-90. [DOI:10.3109/21678421.2013.824000]
92. Zimmerman MC, Oberley LW, Flanagan SW. Mutant SOD1‐induced neuronal toxicity is mediated by increased mitochondrial superoxide levels. Journal of Neurochemistry. 2007; 102(3): 609-18. [DOI:10.1111/j.1471-4159.2007.04502.x]
93. Ezzi SA, Urushitani M, Julien JP. Wild‐type superoxide dismutase acquires binding and toxic properties of ALS‐linked mutant forms through oxidation. Journal of Neurochemistry. 2007; 102(1): 170-8. [DOI:10.1111/j.1471-4159.2007.04531.x]
94. Gholamzadeh S, Heshmati B, Mani A, Petramfar P, Baghery Z. The prevalence of Alzheimer's disease; its risk and protective factors among the elderly population in Iran. Shiraz E-Medical Journal. 2017; 18(9). [DOI:10.5812/semj.57576]
95. da S H-M, Lorane I, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, et al. The impact of natural compounds on the treatment of neurodegenerative diseases. Current Organic Chemistry. 2019; 23(3): 335-60. [DOI:10.2174/1385272823666190327100418]
96. Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer's disease. J Environ Public Health. 2012; 2012. doi: 10.1155/2012/472751. [DOI:10.1155/2012/472751]
97. He Y. Association between air pollution and the prevalence of Alzheimer's disease in four metropolitan areas in the United States of America. Master's Thesis. Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai. 2019.
98. Hare DJ, Faux NG, Roberts BR, Volitakis I, Martins RN, Bush AI. Lead and manganese levels in serum and erythrocytes in Alzheimer's disease and mild cognitive impairment: results from the Australian imaging, biomarkers and lifestyle flagship study of ageing. Metallomics. 2016; 8(6): 628-32. [DOI:10.1039/C6MT00019C]
99. Bjørklund G, Tinkov AA, Dadar M, Rahman MM, Chirumbolo S, Skalny AV, et al. Insights into the potential role of mercury in Alzheimer's disease. J Mol Neurosci. 2019; 67(4): 511-33. [DOI:10.1007/s12031-019-01274-3]
100. Cariccio VL, Samà A, Bramanti P, Mazzon E. Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol Trace Elem Res. 2019; 187(2): 341-56. [DOI:10.1007/s12011-018-1380-4]
101. Meleleo D, Notarachille G, Mangini V, Arnesano F. Concentration-dependent effects of mercury and lead on Aβ42: possible implications for Alzheimer's disease. Eur Biophys J. 2019; 48(2): 173-87. [DOI:10.1007/s00249-018-1344-9]
102. Mutter J, Naumann J, Schneider R, Walach H. Mercury and Alzheimer's disease. Fortschr Neurol Psychiatr. 2007; 75(9): 528-38. [DOI:10.1055/s-2007-959237]
103. Bondy SC. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration. Neurotoxicology. 2016; 52: 222-9. [DOI:10.1016/j.neuro.2015.12.002]
104. Kandimalla R, Vallamkondu J, Corgiat EB, Gill KD. Understanding aspects of Aluminum exposure in a lzheimer's disease development. Brain Pathol. 2016; 26(2): 139-54. [DOI:10.1111/bpa.12333]
105. Liaquat L, Sadir S, Batool Z, Tabassum S, Shahzad S, Afzal A, et al. Acute aluminum chloride toxicity revisited: Study on DNA damage and histopathological, biochemical and neurochemical alterations in rat brain. Life Sci. 2019; 217: 202-11. [DOI:10.1016/j.lfs.2018.12.009]
106. Gómez M, Esparza JL, Nogués MR, Giralt M, Cabré M, Domingo JL. Pro-oxidant activity of aluminum in the rat hippocampus: gene expression of antioxidant enzymes after melatonin administration. Free Radic Biol Med. 2005; 38(1): 104-11. [DOI:10.1016/j.freeradbiomed.2004.10.009]
107. Ahmed MF, Mokhtar MB, Alam L, Mohamed CAR, Ta GC. Non-carcinogenic Health Risk Assessment of Aluminium Ingestion Via Drinking Water in Malaysia. Exposure and Health. 2019: 167-80. [DOI:10.1007/s12403-019-00297-w]
108. Bergsland N, Zivadinov R, Schweser F, Hagemeier J, Lichter D, Guttuso Jr T. Ventral posterior substantia nigra iron increases over 3 years in Parkinson's disease. Mov Disord. 2019; 34(7): 1006-13. [DOI:10.1002/mds.27730]
109. Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008; 4(11): 600-9. [DOI:10.1038/ncpneuro0924]
110. Xu H, Wang Y, Song N, Wang J, Jiang H, Xie J. New progress on the role of glia in iron metabolism and iron-induced degeneration of dopamine neurons in Parkinson's disease. Front Mol Neurosci. 2018; 10: 455. doi: 10.3389/fnmol.2017.00455. [DOI:10.3389/fnmol.2017.00455]
111. Rouault TA, Tong W-H. Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol. 2005; 6(4): 345-51. [DOI:10.1038/nrm1620]
112. Bresciani G, da Cruz IBM, González-Gallego J. Manganese superoxide dismutase and oxidative stress modulation. Adv Clin Chem. 2015; 68: 87-130. [DOI:10.1016/bs.acc.2014.11.001]
113. Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacology & Therapeutics. 2020: 107523. [DOI:10.1016/j.pharmthera.2020.107523]
114. Benoit-Biancamano MO, Connelly J, Villeneuve L, Caron P, Guillemette C. Deferiprone glucuronidation by human tissues and recombinant UGT1A6: an in vitro investigation of genetic and splice variants. Drug Metab Dispos. 2009; 37(2): 322-9. [DOI:10.1124/dmd.108.023101]
115. Benoit-Biancamano M-O, Connelly J, Villeneuve L, Caron P, Guillemette C. Deferiprone glucuronidation by human tissues and recombinant UDP glucuronosyltransferase 1A6: an in vitro investigation of genetic and splice variants. Drug Metabolism and Disposition. 2009; 37(2): 322-9. [DOI:10.1124/dmd.108.023101]
116. Kovacsova M, Barta A, Parohova J, Vrankova S, Pechanova O. Neuroprotective mechanisms of natural polyphenolic compounds. Act Nerv Super Rediviva. 2010; 52(3): 181-6.
117. Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A review of the role of green tea (camellia sinensis) in anti photoaging, stress resistance, neuroprotection, and autophagy. Nutrients. 2019; 11(2): 474. doi: 10.3390/nu11020474. [DOI:10.3390/nu11020474]
118. Farkhondeh T, Yazdi HS, Samarghandian S. The protective effects of green tea catechins in the management of neurodegenerative diseases: a review. Curr Drug Discov Technol. 2019; 16(1): 57-65. [DOI:10.2174/1570163815666180219115453]
119. Xing L, Zhang H, Qi R, Tsao R, Mine Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem. 2019; 67(4): 1029-43. [DOI:10.1021/acs.jafc.8b06146]
120. Monroy A, Lithgow GJ, Alavez S. Curcumin and neurodegenerative diseases. Biofactors. 2013 Jan;39(1):122-32. [DOI:10.1002/biof.1063]
121. Goozee KG, Shah TM, Sohrabi HR, Rainey-Smith SR, Brown B, Verdile G, et al. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer's disease. Br J Nutr. 2016; 115(3): 449-65. [DOI:10.1017/S0007114515004687]
122. Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, ageing, oxidative and nitrosative stress: a review. Neuroscience. 2019; 406: 1-21. [DOI:10.1016/j.neuroscience.2019.02.020]
123. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015; 9: 124. doi: 10.3389/fncel.2015.00124. [DOI:10.3389/fncel.2015.00124]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Montazeri A, Akhlaghi M, Barahimi A R, Jahanbazi Jahan Abad A, Jabbari R. The Role of Metals in Neurodegenerative Diseases of the Central Nervous System. Shefaye Khatam 2020; 8 (2) :130-146
URL: http://shefayekhatam.ir/article-1-2073-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (Spring 2020) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.07 seconds with 45 queries by YEKTAWEB 4645