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ABSTRACT

Introduction: Epilepsy is one of the most common brain disorders that greatly affect
patients’ life. However, early detection of seizure attacks can significantly improve their
quality of life. In this study, we evaluated a deep neural network to learn robust features from
electroencephalography (EEG) signals to automatically detect and predict seizure attacks.

Materials and Methods: The architecture consists of convolutional neural networks and
long short-term memory networks. It is designed to simultaneously capture spectral, temporal,
and spatial information. Moreover, the architecture does not rely on explicit channel selection

algorithms. The method is applied to the Children’s Hospital of Boston-Massachusetts Ins
titute of Technology dataset (CHB-MIT). To evaluate the method, the proposed model is

trained in the patient-specific approach. Results: The proposed architecture achieves a
sensitivity of 90.7 + 7.9 percent, a false prediction rate of 0.12/h, and a mean prediction

time of 36.8 minutes. Moreover, in the cases of focal seizures, the proposed model estimates

the seizure focus. Conclusion: The proposed model achieved a high capability in seizure

prediction. Moreover, by using the automated feature selection of the deep learning algorithm,

the patterns of the pre-ictal period in EEG signals were determined. Furthermore, by

specifying the seizure focus, the model can help neurologists to take further curative actions.
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