[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 8, Issue 4 (Autumn 2020) ::
Shefaye Khatam 2020, 8(4): 39-49 Back to browse issues page
tDCS Anodic Stimulation of Left Hemisphere DLPFC Regulates Hot Executive Performance
Farzaneh Pouladi, Masood Bagheri *, Ghasem Askarizadeh
Department of Psychology, Faculty of Literature and Humanities, Shahid Bahonar University, Kerman, Iran , mbagheri@uk.ac.ir
Abstract:   (2210 Views)
Introduction: The executive function is a set of higher-level cognitive abilities that control a high level of behavior. The executive function acts in a variety of contexts differently, including the function of the hot type that evoked in areas that are influenced by emotion, motivation, and reward. The present study was performed to investigate the effects of transcranial direct current stimulation (tDCS) on the left dorsolateral prefrontal cortex (DLPFC) on hot executive function. Materials and Methods: The study was a single-blind experimental study performed on 30 healthy adults. In this study, subjects were randomly divided into two experimental and control groups. In the experimental group, anodal stimulation over the left DLPFC and cathodal stimulation over the right OFC were performed at 2 mA. The tasks used were computer versions of the Balloon Analogue Risk Task and the Iowa Gambling Task for evaluating decision making and risk-taking. Results: A significant difference was observed between the experimental and control groups in the Bart test. There was difference between the two groups in the Iowa test. Conclusion: tDCS anodic stimulation can increase the hot executive functions in decision making.
Keywords: Transcranial Direct Current Stimulation, Executive Function, Emotions
Full-Text [PDF 804 kb]   (1051 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
1. Imburgio MJ, Orr JM. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis. Neuropsychologia. 2018; 117: 156-66. [DOI:10.1016/j.neuropsychologia.2018.04.022]
2. Passarotti AM, Trivedi N, Patel M. Executive function in adolescent bipolar disorder with and without adhd comorbidity. Bipolar Disord. 2015; 1(1): 1-8. [DOI:10.4172/2472-1077.1000101]
3. Miyake A, Friedman NP. The nature and organization of individual differences in executive functions: four general conclusions. Curr Dir Psychol Sci. 2012; 21(1): 8-14. [DOI:10.1177/0963721411429458]
4. Ward J. The student's guide to cognitive neuroscience. New York, NY: Psychology Press. 2015. [DOI:10.4324/9781315742397]
5. Peterson E, Welsh MC. The development of hot and cool executive functions in childhood and adolescence are we getting warmer? S. Goldstein, Naglieri JA. Handbook of executive functioning New York, NY: Springer New York. 2014; P. 45-65. [DOI:10.1007/978-1-4614-8106-5_4]
6. Bechara A. The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage. Brain Cogn. 2004; 55(1): 30-40. [DOI:10.1016/j.bandc.2003.04.001]
7. Zelazo PD, Qu L, Kesek AC. Hot executive function: Emotion and the development of cognitive control. Bell Isdcma. Human brain development child development at the intersection of emotion and cognition. Washington, DC, US: American Psychological Association. 2010; P. 97-111. [DOI:10.1037/12059-006]
8. Poland SE, Monks CP, Tsermentseli S. Cool and hot executive function as predictors of aggression in early childhood: Differentiating between the function and form of aggression. Br J Dev Psychol. 2016; 34(2): 181-97. [DOI:10.1111/bjdp.12122]
9. Zelazo PD, Carlson SM. Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives. 2012; 6(4): 354-60. [DOI:10.1111/j.1750-8606.2012.00246.x]
10. Yuan P, Raz N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev. 2014; 42: 180-92. [DOI:10.1016/j.neubiorev.2014.02.005]
11. Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci. 2012; 12(2): 241-68. [DOI:10.3758/s13415-011-0083-5]
12. Oldrati V, Patricelli J, Colombo B, Antonietti A. The role of dorsolateral prefrontal cortex in inhibition mechanism: A study on cognitive reflection test and similar tasks through neuromodulation. Neuropsychologia. 2016; 91: 499-508. [DOI:10.1016/j.neuropsychologia.2016.09.010]
13. Miller EK, Wallis JD. The prefrontal cortex and executive brain functions. Academic Press. 2012. [DOI:10.1016/B978-0-12-385870-2.00050-0]
14. Salehinejad MA, Rostami R, Ghanavati E. Transcranial Direct current stimulation of dorsolateral prefrontal cortex of major depression: improving visual working memory, reducing depressive symptoms. Neuro Regulation. 2015; 2: 37-49. [DOI:10.15540/nr.2.1.37]
15. Nitsche MA, Kuo MF, Paulus W, Antal A. Transcranial direct current stimulation: protocols and physiological mechanisms of action. AH Knotkov, D Rasche. Textbook of neuromodulation: principles, methods and clinical applications. New York, NY: Springer, 2015. [DOI:10.1007/978-1-4939-1408-1_9]
16. Nitsche MA, Paulus W. Transcranial direct current stimulation-update 2011. Restorative Neurology and Neuroscience. 2011; 29(6): 463-92. [DOI:10.3233/RNN-2011-0618]
17. Wassermann EM, Grafman J. Recharging cognition with DC brain polarization. Trends in Cognitive Sciences. 2005; 9(11): 503-5. [DOI:10.1016/j.tics.2005.09.001]
18. Plewnia C, Schroeder PA, Wolkenstein L. Targeting the biased brain: non-invasive brain stimulation to ameliorate cognitive control. Lancet Psychiatry. 2015; 2(4): 351-6. [DOI:10.1016/S2215-0366(15)00056-5]
19. Marshall L, Mölle M, Siebner HR, Born J. Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC Neuroscience. 2005; 6: 23. [DOI:10.1186/1471-2202-6-23]
20. Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014; 85(3): 895-908. [DOI:10.1016/j.neuroimage.2013.07.083]
21. Kuo MF, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci. 2012; 43(3): 192-9. [DOI:10.1177/1550059412444975]
22. Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C. Enhancement of planning ability by transcranial direct current stimulation. J Neurosci. 2009; 29(22): 7271-7. [DOI:10.1523/JNEUROSCI.0065-09.2009]
23. Jeon SY, Han SJ. Improvement of the working memory and naming by transcranial direct current stimulation. Ann Rehabil Med. 2012; 36(5): 585-95. [DOI:10.5535/arm.2012.36.5.585]
24. Stone DB, Tesche CD. Transcranial direct current stimulation modulates shifts in global/local attention. Neuroreport. 2009; 20(12): 1115-9. [DOI:10.1097/WNR.0b013e32832e9aa2]
25. Pripfl J, Neumann R, Kohler U, Lamm C. Effects of transcranial direct current stimulation on risky decision making are mediated by 'hot' and 'cold' decisions, personality, and hemisphere. The European Journal of Neuroscience. 2013; 38(12): 3778-85. [DOI:10.1111/ejn.12375]
26. Boggio PS, Campanha C, Valasek CA, Fecteau S, Pascual-Leone A, Fregni F. Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur J Neurosci. 2010; 31(3): 593-7. [DOI:10.1111/j.1460-9568.2010.07080.x]
27. Plewnia C, Zwissler B, Langst I, Maurer B, Giel K, Kruger R. Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism. Cortex. 2013; 49(7): 1801-7. [DOI:10.1016/j.cortex.2012.11.002]
28. Xue G, Juan C-H, Chang C-F, Lu Z-L, Dong Q. Lateral prefrontal cortex contributes to maladaptive decisions. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109: 4401-6. [DOI:10.1073/pnas.1111927109]
29. Nagel IE, Preuschhof C, Li SC, Nyberg L, Backman L, Lindenberger U, et al. Load modulation of BOLD response and connectivity predicts working memory performance in younger and older adults. J Cogn Neurosci. 2011; 23(8): 2030-45. [DOI:10.1162/jocn.2010.21560]
30. Filmer HL, Mattingley JB, Dux PE. Improved multitasking following prefrontal tDCS. Cortex. 2013; 49(10): 2845-52. [DOI:10.1016/j.cortex.2013.08.015]
31. Vanderhasselt MA, De Raedt R, Brunoni AR, Campanha C, Baeken C, Remue J, et al. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli. PloS One. 2013; 8(5): e62219. [DOI:10.1371/journal.pone.0062219]
32. Zelazo PD, Qu L, Kesek AC. Executive function: emotion and the development of cognitive control. Calkins SD, Bell MA. Human brain development child development at the intersection of emotion and cognition. Washington, DC, US: American Psychological Association. 2010; P. 97-111. [DOI:10.1037/12059-006]
33. Brock LL, Rimm-Kaufman SE, Nathanson L, Grimm KJ. The contributions of 'hot' and 'cool' executive function to children's academic achievement, learning-related behaviors, and engagement in kindergarten. Early Childhood Research Quarterly. 2009; 24(3): 337-49. [DOI:10.1016/j.ecresq.2009.06.001]
34. Jacobson LA, Williford AP, Pianta RC. The role of executive function in children's competent adjustment to middle school. Child Neuropsychology. 2011; 17(3): 255-80. [DOI:10.1080/09297049.2010.535654]
35. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cogn Psychol. 2000; 41(1): 49-100. [DOI:10.1006/cogp.1999.0734]
36. H E, A B. Which one has negative effect on us? Investigating the risky decision making strategies by AIWA gambling test. J Cogn Sci. 2007; 6(3-4): 17-25.
37. Hunt MK, Hopko DR, Bare R, Lejuez CW, Robinson EV. Construct validity of the Balloon Analog Risk Task (BART): associations with psychopathy and impulsivity. Assessment. 2005; 12(4): 416-28. [DOI:10.1177/1073191105278740]
38. Malloy-Diniz L, Fuentes D, Leite WB, Correa H, Bechara A. Impulsive behavior in adults with attention deficit/ hyperactivity disorder: characterization of attentional, motor and cognitive impulsiveness. Journal of the International Neuropsychological Society. 2007; 13(4): 1-6. [DOI:10.1017/S1355617707070889]
39. Gansler DA, Jerram MW, Vannorsdall TD, Schretlen DJ. Does the iowa gambling task measure executive function? Arch Clin Neuropsychol. 2011; 26(8): 706-17. [DOI:10.1093/arclin/acr082]
40. Ekhtiari H, A B. Evaluation of risk full decision making: Evidence of transcultural differences. Journal of New Cognitive Sciences. 2001; 3(4): 36-48.
41. Murphy A, Taylor E, Elliott R. The detrimental effects of emotional process dysregulation on decision-making in substance dependence. Front Integr Neurosci. 2012; 6: 101. doi: 10.3389/fnint.2012.00101. [DOI:10.3389/fnint.2012.00101]
42. Cservenka A, Nagel BJ. Risky decision-making: an FMRI study of youth at high risk for alcoholism. Alcohol Clin Exp Res. 2012; 36(4): 604-15. [DOI:10.1111/j.1530-0277.2011.01650.x]
43. Knoch D, Gianotti LR, Pascual-Leone A, Treyer V, Regard M, Hohmann M, et al. Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J Neurosci. 2006; 26(24): 6469-72. [DOI:10.1523/JNEUROSCI.0804-06.2006]
44. van 't Wout M, Kahn RS, Sanfey AG, Aleman A. Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex affects strategic decision-making. Neuroreport. 2005; 16(16): 1849-52. [DOI:10.1097/01.wnr.0000183907.08149.14]
45. Ernst M, Paulus MP. Neurobiology of decision making: a selective review from a neurocognitive and clinical perspective. Biol Psychiatry. 2005; 58(8): 597-604. [DOI:10.1016/j.biopsych.2005.06.004]
46. Minati L, Campanha C, Critchley HD, Boggio PS. Effects of transcranial direct-current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) during a mixed-gambling risky decision-making task. Cogn Neurosci. 2012; 3(2): 80-8. [DOI:10.1080/17588928.2011.628382]
47. Fecteau S, Knoch D, Fregni F, Sultani N, Boggio P, Pascual-Leone A. Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci. 2007; 27(46): 12500-5. [DOI:10.1523/JNEUROSCI.3283-07.2007]
48. Beeli G, Casutt G, Baumgartner T, Jancke L. Modulating presence and impulsiveness by external stimulation of the brain. Behav Brain Funct. 2008; 4: 33. doi: 10.1186/1744-9081-4-33. [DOI:10.1186/1744-9081-4-33]
49. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011; 17(1): 37-53. [DOI:10.1177/1073858410386614]
50. Hecht D, Walsh V, Lavidor M. Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task. J Neurosci. 2010; 30(12): 4241-5. [DOI:10.1523/JNEUROSCI.2924-09.2010]
51. Rosenbloom MH, Schmahmann JD, Price BH. The functional neuroanatomy of decision-making. J Neuropsychiatry Clin Neurosci. 2012; 24(3): 266-77. [DOI:10.1176/appi.neuropsych.11060139]
52. Volz KG, von Cramon DY. How the orbitofrontal cortex contributes to decision making - A view from neuroscience. Raab M, Johnson JG, Heekeren HR. Progress in Brain Research. 174: Elsevier. 2009; P. 61-71. [DOI:10.1016/S0079-6123(09)01306-5]
53. Floden D, Alexander MP, Kubu CS, Katz D, Stuss DT. Impulsivity and risk-taking behavior in focal frontal lobe lesions. Neuropsychologia. 2008; 46(1): 213-23. [DOI:10.1016/j.neuropsychologia.2007.07.020]
54. Schonberg T, Fox CR, Mumford JA, Congdon E, Trepel C, Poldrack RA. Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: an FMRI investigation of the balloon analog risk task. Front Neurosci. 2012; 6: 80. [DOI:10.3389/fnins.2012.00080]
55. Metereau E, Dreher JC. The medial orbitofrontal cortex encodes a general unsigned value signal during anticipation of both appetitive and aversive events. Cortex. 2015; 63: 42-54. [DOI:10.1016/j.cortex.2014.08.012]
56. Li CW, Chen JH, Tsai CG. Listening to music in a risk-reward context: The roles of the temporoparietal junction and the orbitofrontal/insular cortices in reward-anticipation, reward-gain, and reward-loss. Brain Res. 2015; 1629: 160-70. [DOI:10.1016/j.brainres.2015.10.024]
57. Ouellet J, McGirr A, Van den Eynde F, Jollant F, Lepage M, Berlim MT. Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): A randomized and sham-controlled exploratory study. J Psychiatr Res. 2015; 69: 27-34. [DOI:10.1016/j.jpsychires.2015.07.018]
58. Wallis JD. Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci. 2007; 30: 31-56. [DOI:10.1146/annurev.neuro.30.051606.094334]
59. Fecteau S, Pascual-Leone A, Zald DH, Liguori P, Theoret H, Boggio PS, et al. Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci. 2007; 27(23): 6212-8. [DOI:10.1523/JNEUROSCI.0314-07.2007]
60. Betsch T. Preferencetheory:anaffect-basedapproach to recurrentdecisionmaking. T.Betsch & S. Haberstroh. The routinesofdecisionmaking. Mahwah, NJ:LawrenceErlbaumAssociates. 2005; P. 39-65.
61. Berryhill ME, Jones KT. tDCS selectively improves working memory in older adults with more education. Neurosci Lett. 2012; 521(2): 148-51. [DOI:10.1016/j.neulet.2012.05.074]
62. Ohn SH, Park CI, Yoo WK, Ko MH, Choi KP, Kim GM, et al. Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport. 2008; 19(1): 43-7. [DOI:10.1097/WNR.0b013e3282f2adfd]
63. Fregni F, Marcolin MA, Myczkowski M, Amiaz R, Hasey G, Rumi DO, et al. Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation. Int J Neuropsychopharmacol. 2006; 9(6): 641-54. [DOI:10.1017/S1461145705006280]
64. Butler T, Pan H, Imperato-McGinley J, Voyer D, Cunningham-Bussel AC, Cordero JJ, et al. A network approach to fMRI condition-dependent cognitive activation studies as applied to understanding sex differences. Clinical Neuroscience Research. 2007; 6(6): 391-8. [DOI:10.1016/j.cnr.2007.05.005]
65. Mylius V, Ayache SS, Ahdab R, Farhat WH, Zouari HG, Belke M, et al. Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age. Neuroimage. 2013; 78: 224-32. [DOI:10.1016/j.neuroimage.2013.03.061]
66. Boggio PS, Rocha RR, da Silva MT, Fregni F. Differential modulatory effects of transcranial direct current stimulation on a facial expression go-no-go task in males and females. Neurosci Lett. 2008; 447(2-3): 101-5. [DOI:10.1016/j.neulet.2008.10.009]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pouladi F, Bagheri M, Askarizadeh G. tDCS Anodic Stimulation of Left Hemisphere DLPFC Regulates Hot Executive Performance. Shefaye Khatam. 2020; 8 (4) :39-49
URL: http://shefayekhatam.ir/article-1-2148-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 4 (Autumn 2020) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4419