[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 10, Issue 4 (Autumn 2022) ::
Shefaye Khatam 2022, 10(4): 92-103 Back to browse issues page
Animal Models of Addiction: A Review
Hamed Ghazvini, Seyedeh Masoumeh Seyedhoseini Tamijani, Raheleh Rafaiee *
Department of Neuroscience, Faculty of Advanced Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran , rahelerafaie@gmail.com
Abstract:   (262 Views)
Introduction: The study of neural and cognitive pathways in addiction is one of the most important challenges of neuroscience. Addictive drugs stimulate the reward circuits, motivation, euphoria, cognitive changes, and motor activity. Several studies have shown that mesocorticolimbic pathway activity plays an important role in cognition and behavior activated by natural rewards and addictive substances. There is a significant relationship between substance-seeking behavior and decision-making, attention, learning, memory, reward, and substance use. The development of animal models of addiction is essential to our understanding of the substance addiction mechanisms and the cognitive symptoms that result from the continuation of addiction. In this study, we reviewed the various animal models of addiction and their contribution to our understanding of the pathophysiological mechanisms. Conclusion: According to different routes of drug abuse in humans, there are different types of animal models that include different paradigms, such as inhaled, oral, and intravenous. Intracranial self-stimulation and conditioned animal models based on drug reward attempt to understand the neurobiological basis of addiction and subsequent drug-induced cognitive impairments. Conditioned place preference is one of the more widely used models to study the rewarding properties of drugs in the context of reward-related learning and measures an animal's ability to predict future rewards. Recently, these animal models have been used to simulate drug addiction to provide new perspectives for studying different phenomena, such as extinction, relapse, compulsive drug-seeking behavior, withdrawal syndrome, and drug-induced cognitive impairments. In summary, these innovations in animal modeling have allowed us to improve our knowledge of drug addiction and the biological basis of addiction-related cognitive disorders in the future.
Keywords: Substance-Related Disorders, Models, Animal, Reward
Full-Text [PDF 966 kb]   (77 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Sussman S, Sussman AN. Considering the definition of addiction. International journal of environmental research and public health. 2011; 8(10): 4025-38. [DOI:10.3390/ijerph8104025]
2. Tiffany ST. Consideration of a comprehensive animal model of addiction: the limitations of modeling a counterfeit condition. Psychopharmacology. 2014; 231(19): 3919-20. [DOI:10.1007/s00213-014-3625-z]
3. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. The Lancet Psychiatry. 2016; 3(8): 760-73. [DOI:10.1016/S2215-0366(16)00104-8]
4. Koob GF. Negative reinforcement in drug addiction: the darkness within. Current opinion in neurobiology. 2013; 23(4): 559-63. [DOI:10.1016/j.conb.2013.03.011]
5. Wise RA, Koob GF. The development and maintenance of drug addiction. Neuropsychopharmacology. 2014; 39(2): 254-62. [DOI:10.1038/npp.2013.261]
6. Edwards S, Koob GF. Escalation of drug self-administration as a hallmark of persistent addiction liability. Behavioural pharmacology. 2013; 24. [DOI:10.1097/FBP.0b013e3283644d15]
7. Platt DM, Carey G, Spealman RD. Models of Neurological Disease (Substance Abuse): Self‐Administration in Monkeys. Current protocols in pharmacology. 2012; 56(1): 10.5. 1-.5. 7. [DOI:10.1002/0471141755.ph1005s56]
8. Smith MA, Fronk GE, Abel JM, Lacy RT, Bills SE, Lynch WJ. Resistance exercise decreases heroin self-administration and alters gene expression in the nucleus accumbens of heroin-exposed rats. Psychopharmacology. 2018; 235(4): 1245-55. [DOI:10.1007/s00213-018-4840-9]
9. Smith III RT. Naloxone and Ethanol Addiction Reinforcement. 2019.
10. Guo L-k, Wang Z-y, Lu G-y, Wu N, Dong G-m, Ma C-m, et al. Inhibition of naltrexone on relapse in methamphetamine self-administration and conditioned place preference in rats. European Journal of Pharmacology. 2019; 865: 172671. [DOI:10.1016/j.ejphar.2019.172671]
11. Bergman J, Roof RA, Furman CA, Conroy JL, Mello NK, Sibley DR, et al. Modification of cocaine self-administration by buspirone (buspar®): potential involvement of D3 and D4 dopamine receptors. International Journal of Neuropsychopharmacology. 2013; 16(2): 445-58. [DOI:10.1017/S1461145712000661]
12. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Nader SH, et al. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Social Neuroscience: Psychology Press; 2013. p. 243-52.
13. Juarez-Portilla C, Kim R, Robotham M, Tariq M, Pitter M, LeSauter J, et al. Voluntary inhalation of methamphetamine: a novel strategy for studying intake non-invasively. Psychopharmacology. 2017; 234(5): 739-47. [DOI:10.1007/s00213-016-4510-8]
14. Rafaiee R, Ahmadiankia N, Mousavi SA, Rezaeian L, Niroumand Sarvandani M, Shekari A, et al. Inhalant self-administration of methamphetamine: the most similar model to human methamphetamine addiction. Iranian Journal of Psychiatry and Behavioral Sciences. 2019; 13(3). [DOI:10.5812/ijpbs.90561]
15. Quijano Cardé NA, De Biasi M. Behavioral characterization of withdrawal following chronic voluntary ethanol consumption via intermittent two‐bottle choice points to different susceptibility categories. Alcoholism: Clinical and Experimental Research. 2022. [DOI:10.1111/acer.14785]
16. Griffin WC, 3rd. Alcohol dependence and free-choice drinking in mice. Alcohol (Fayetteville, NY). 2014; 48(3): 287-93. [DOI:10.1016/j.alcohol.2013.11.006]
17. Vendruscolo LF, Roberts AJ. Operant alcohol self-administration in dependent rats: focus on the vapor model. Alcohol. 2014; 48(3): 277-86. [DOI:10.1016/j.alcohol.2013.08.006]
18. Ye T, Pozos H, Phillips TJ, Izquierdo A. Long-term effects of exposure to methamphetamine in adolescent rats. Drug and alcohol dependence. 2014; 138: 17-23. [DOI:10.1016/j.drugalcdep.2014.02.021]
19. Yoon SS, Yun J, Lee BH, Kim HY, Yang CH. Acupuncture Modulates Intracranial Self-Stimulation of the Medial Forebrain Bundle in Rats. International Journal of Molecular Sciences. 2021; 22(14): 7519. [DOI:10.3390/ijms22147519]
20. Markou A, Koob GF. Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiology & behavior. 1992; 51(1): 111-9. [DOI:10.1016/0031-9384(92)90211-J]
21. Vlachou S, Markou A. Intracranial self-stimulation. Animal models of drug addiction: Springer; 2011. P. 3-56. [DOI:10.1007/978-1-60761-934-5_1]
22. Bauer C, Banks M, Blough B, Negus S. Use of intracranial self‐stimulation to evaluate abuse‐related and abuse‐limiting effects of monoamine releasers in rats. British journal of pharmacology. 2013; 168(4): 850-62. [DOI:10.1111/j.1476-5381.2012.02214.x]
23. Negus SS, Moerke MJ. Determinants of opioid abuse potential: Insights using intracranial self-stimulation. Peptides. 2019; 112: 23-31. [DOI:10.1016/j.peptides.2018.10.007]
24. Napier TC, Herrold AA, De Wit H. Using conditioned place preference to identify relapse prevention medications. Neuroscience & Biobehavioral Reviews. 2013; 37(9): 2081-6. [DOI:10.1016/j.neubiorev.2013.05.002]
25. McKendrick G, Graziane NM. Drug-induced conditioned place preference and its practical use in substance use disorder research. Frontiers in behavioral neuroscience. 2020; 14: 173. [DOI:10.3389/fnbeh.2020.582147]
26. Cunningham CL, Gremel CM, Groblewski PA. Drug-induced conditioned place preference and aversion in mice. Nature Protocols. 2006; 1(4): 1662-70. [DOI:10.1038/nprot.2006.279]
27. Cunningham CL, Clemans JM, Fidler TL. Injection timing determines whether intragastric ethanol produces conditioned place preference or aversion in mice. Pharmacology Biochemistry and Behavior. 2002; 72(3): 659-68. [DOI:10.1016/S0091-3057(02)00734-7]
28. Seo D, Sinha R. The neurobiology of alcohol craving and relapse. Handbook of clinical neurology. 2014; 125: 355-68. [DOI:10.1016/B978-0-444-62619-6.00021-5]
29. Spanagel R. Animal models of addiction. Dialogues in clinical neuroscience. 2017; 19(3): 247-58. [DOI:10.31887/DCNS.2017.19.3/rspanagel]
30. Emmett-Oglesby M, Mathis D, Moon R, Lal H. Animal models of drug withdrawal symptoms. Psychopharmacology. 1990; 101(3): 292-309. [DOI:10.1007/BF02244046]
31. Holtz NA, Radke AK, Zlebnik NE, Harris AC, Carroll ME. Intracranial self-stimulation reward thresholds during morphine withdrawal in rats bred for high (HiS) and low (LoS) saccharin intake. Brain research. 2015; 1602: 119-26. [DOI:10.1016/j.brainres.2015.01.004]
32. Kenny PJ, Markou A. Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. Journal of Neuroscience. 2005; 25(26): 6208-12. [DOI:10.1523/JNEUROSCI.4785-04.2005]
33. Huston JP, de Souza Silva MA, Topic B, Müller CP. What's conditioned in conditioned place preference? Trends in Pharmacological Sciences. 2013; 34(3): 162-6. [DOI:10.1016/j.tips.2013.01.004]
34. Stinus L, Cador M, Zorrilla EP, Koob GF. Buprenorphine and a CRF1 Antagonist Block the Acquisition of Opiate Withdrawal-Induced Conditioned Place Aversion in Rats. Neuropsychopharmacology. 2005; 30(1): 90-8. [DOI:10.1038/sj.npp.1300487]
35. Cunningham CL. Genetic relationships between ethanol-induced conditioned place aversion and other ethanol phenotypes in 15 inbred mouse strains. Brain sciences. 2019; 9(8): 209. [DOI:10.3390/brainsci9080209]
36. Dannenhoffer CA, Spear LP. Age differences in conditioned place preferences and taste aversions to nicotine. Developmental Psychobiology. 2016; 58(5): 660-6. [DOI:10.1002/dev.21400]
37. Jang C-G, Whitfield T, Schulteis G, Koob GF, Wee S. A dysphoric-like state during early withdrawal from extended access to methamphetamine self-administration in rats. Psychopharmacology. 2013; 225(3): 753-63. [DOI:10.1007/s00213-012-2864-0]
38. Bigdeli I, Asia MN-H, Miladi-Gorji H, Fadaei A. The spatial learning and memory performance in methamphetamine-sensitized and withdrawn rats. Iranian journal of basic medical sciences. 2015; 18(3): 234.
39. Kang S, Li J, Zuo W, Fu R, Gregor D, Krnjevic K, et al. Ethanol withdrawal drives anxiety-related behaviors by reducing M-type potassium channel activity in the lateral habenula. Neuropsychopharmacology. 2017; 42(9): 1813-24. [DOI:10.1038/npp.2017.68]
40. Miladi-Gorji H, Fadaei A, Bigdeli I. Anxiety assessment in methamphetamine-sensitized and withdrawn rats: immediate and delayed effects. Iranian journal of psychiatry. 2015; 10(3): 150.
41. Schank JR, Goldstein AL, Rowe KE, King CE, Marusich JA, Wiley JL, et al. The kappa opioid receptor antagonist JDTic attenuates alcohol seeking and withdrawal anxiety. Addiction biology. 2012; 17(3): 634-47. [DOI:10.1111/j.1369-1600.2012.00455.x]
42. Kumar J, Hapidin H, Bee Y-TG, Ismail Z. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats. Behavioral and Brain Functions. 2013; 9(1): 1-13. [DOI:10.1186/1744-9081-9-43]
43. Aujla H, Cannarsa R, Romualdi P, Ciccocioppo R, Martin‐Fardon R, Weiss F. Modification of anxiety‐like behaviors by nociceptin/orphanin FQ (N/OFQ) and time‐dependent changes in N/OFQ‐NOP gene expression following ethanol withdrawal. Addiction biology. 2013; 18(3): 467-79. [DOI:10.1111/j.1369-1600.2012.00466.x]
44. Fucich EA, Morilak DA. Shock-probe defensive burying test to measure active versus passive coping style in response to an aversive stimulus in rats. Bio-protocol. 2018; 8(17). [DOI:10.21769/BioProtoc.2998]
45. Kraeuter A-K, Guest PC, Sarnyai Z. The elevated plus maze test for measuring anxiety-like behavior in rodents. Pre-clinical models: Springer; 2019. p. 69-74. [DOI:10.1007/978-1-4939-8994-2_4]
46. Mohseni F, Behnam SG, Rafaiee R. A Review of the historical evolutionary process of dry and water maze tests in rodents. Basic and Clinical Neuroscience. 2020; 11(4): 389. [DOI:10.32598/bcn.11.4.1425.1]
47. Golden SA, Jin M, Shaham Y. Animal models of (or for) aggression reward, addiction, and relapse: behavior and circuits. Journal of neuroscience. 2019; 39(21): 3996-4008. [DOI:10.1523/JNEUROSCI.0151-19.2019]
48. Marchant NJ, Li X, Shaham Y. Recent developments in animal models of drug relapse. Current opinion in neurobiology. 2013; 23(4): 675-83. [DOI:10.1016/j.conb.2013.01.003]
49. Shahveisi K, Abdoli N, Farnia V, Khazaie H, Hosseini M, Ghazvini H, et al. REM sleep deprivation before extinction or reinstatement alters methamphetamine reward memory via D1-like dopamine receptors. Pharmacology Biochemistry and Behavior. 2022: 173319. [DOI:10.1016/j.pbb.2021.173319]
50. Venniro M, Caprioli D, Shaham Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Progress in brain research. 2016; 224: 25-52. [DOI:10.1016/bs.pbr.2015.08.004]
51. Martin-Fardon R, Weiss F. Modeling relapse in animals. Behavioral Neurobiology of Alcohol Addiction. 2012: 403-32. [DOI:10.1007/978-3-642-28720-6_202]
52. Pina MM, Williams R. Alcohol cues, craving, and relapse: Insights from animal models. Recent advances in drug addiction research and clinical applications. 2016; 1: 13. [DOI:10.5772/63105]
53. Crombag HS, Bossert JM, Koya E, Shaham Y. Review. Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B Biol Sci. 2008; 363(1507): 3233-43. [DOI:10.1098/rstb.2008.0090]
54. Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron. 2013; 77(5): 867-72. [DOI:10.1016/j.neuron.2013.01.005]
55. Venniro M, Banks ML, Heilig M, Epstein DH, Shaham Y. Improving translation of animal models of addiction and relapse by reverse translation. Nature Reviews Neuroscience. 2020; 21(11): 625-43. [DOI:10.1038/s41583-020-0378-z]
56. Yoon SS, Yang EJ, Lee BH, Jang EY, Kim HY, Choi S-M, et al. Effects of acupuncture on stress-induced relapse to cocaine-seeking in rats. Psychopharmacology. 2012; 222(2): 303-11. [DOI:10.1007/s00213-012-2683-3]
57. Vengeliene V, Bilbao A, Spanagel R. The alcohol deprivation effect model for studying relapse behavior: a comparison between rats and mice. Alcohol. 2014; 48(3): 313-20. [DOI:10.1016/j.alcohol.2014.03.002]
58. Broos N, van Mourik Y, Schetters D, De Vries TJ, Pattij T. Dissociable effects of cocaine and yohimbine on impulsive action and relapse to cocaine seeking. Psychopharmacology. 2017; 234(22): 3343-51. [DOI:10.1007/s00213-017-4711-9]
59. Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacology. 2019; 44(3): 465-77. [DOI:10.1038/s41386-018-0234-2]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghazvini H, Seyedhoseini Tamijani S M, Rafaiee R. Animal Models of Addiction: A Review. Shefaye Khatam 2022; 10 (4) :92-103
URL: http://shefayekhatam.ir/article-1-2272-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 4 (Autumn 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4540