[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 10, Issue 4 (Autumn 2022) ::
Shefaye Khatam 2022, 10(4): 10-19 Back to browse issues page
Investigating Decision-Making with Insufficient Evidence Using Behavioral Modeling
Kimia Darparnian, Zahra Azizi, Reza Ebrahimpour *
a. Department of Artificial Intelligence, Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran. b. Institute for Convergent Science and Technology, Sharif University of Technology, Tehran, Iran , rebrahimpour@sru.ac.ir
Abstract:   (283 Views)
Introduction: Obliging to make decisions with only limited and sometimes insufficient evidence is one of the challenges that we face. Previous studies have examined the effect of evidence on performance, confidence, and response time. The question of what leads to a decision with insufficient evidence is still shrouded in ambiguity. This research tries to find an answer by experimenting with random dot motion tasks and using behavioral modeling. Materials and Methods: A random dot motion psychophysics experiment was designed and 10 participants were asked to indicate the direction of dots and the degree of their confidence after observing the movement of the dots. In this experiment, the duration of stimulus display was variable and, in each trial, randomly had one of the six specified durations (80 to 720 milliseconds). As the stimulus display time varied, participants were exposed to sufficient and insufficient evidence to make a decision. The results of the participants' behavioral data were analyzed by psychometric functions and the participants' behavior was modeled using the drift-diffusion model. Results: Our behavioral data indicate that the duration of stimulus display has a significant impact on increasing accuracy and confidence as well as on reducing response time. Behavioral modeling results also showed that the decision components (i.e., threshold separation, drift rate, and none-decision time) are affected by changes in stimulus duration, and threshold separation is significantly affected. The threshold separation increases significantly as the stimulus shows increases. Conclusion: Our investigation supports the hypothesis that the brain changes the decision threshold and adapts to the situation when making decisions based on insufficient evidence.
Keywords: Decision Making, Psychophysics, Reaction Time
Full-Text [PDF 1150 kb]   (73 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Cognitive Neuroscience
References
1. Heekeren HR, Marrett S, Ungerleider LG. The neural systems that mediate human perceptual decision making. Nat Rev Neurosci. 2008; 9: 467. [DOI:10.1038/nrn2374]
2. Hanks TD, Summerfield C. Perceptual decision making in rodents, monkeys, and humans. Neuron. 2017; 93(1): 15-31. [DOI:10.1016/j.neuron.2016.12.003]
3. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev. 2006; 113(4): 700. [DOI:10.1037/0033-295X.113.4.700]
4. Katz LN, Yates JL, Pillow JW, Huk AC. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature. 2016; 535(7611): 285-8. [DOI:10.1038/nature18617]
5. Yates JL, Park IM, Katz LN, Pillow JW, Huk AC. Functional dissection of signal and noise in MT and LIP during decision-making. Nat Neurosci. 2017; 20(9): 1285. [DOI:10.1038/nn.4611]
6. Deverett B, Koay SA, Oostland M, Wang SSH. Cerebellar involvement in an evidence-accumulation decision-making task. Elife. 2018; 7: e36781. [DOI:10.7554/eLife.36781]
7. Odoemene O, Pisupati S, Nguyen H, Churchland AK. Visual evidence accumulation guides decision-making in unrestrained mice. J Neurosci. 2018; 38(47): 10143-55. [DOI:10.1523/JNEUROSCI.3478-17.2018]
8. Kiani R, Shadlen MN. Representation of confidence associated with a decision by neurons in the parietal cortex. Science. 2009; 324(5928): 759-64. [DOI:10.1126/science.1169405]
9. de Lafuente V, Jazayeri M, Shadlen MN. Representation of accumulating evidence for a decision in two parietal areas. J Neurosci. 2015; 35(10): 4306-18. [DOI:10.1523/JNEUROSCI.2451-14.2015]
10. Stine GM, Zylberberg A, Ditterich J, Shadlen MN. Differentiating between integration and non-integration strategies in perceptual decision making. Elife. 2020; 9: e55365. [DOI:10.7554/eLife.55365]
11. Gold JI, Shadlen MN. Representation of a perceptual decision in developing oculomotor commands. Nature. 2000; 404(6776): 390-4. [DOI:10.1038/35006062]
12. Brunton BW, Botvinick MM, Brody CD. Rats and humans can optimally accumulate evidence for decision-making. Science. 2013; 340(6128): 95-8. [DOI:10.1126/science.1233912]
13. Churchland AK, Kiani R, Shadlen MN. Decision-making with multiple alternatives. Nat Neurosci. 2008; 11(6): 693-702. [DOI:10.1038/nn.2123]
14. Roitman JD, Shadlen MN. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J Neurosci. 2002; 22(21): 9475-89. [DOI:10.1523/JNEUROSCI.22-21-09475.2002]
15. Palmer J, Huk AC, Shadlen MN. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J Vis. 2005; 5(5): 1. [DOI:10.1167/5.5.1]
16. Kiani R, Corthell L, Shadlen MN. Choice certainty is informed by both evidence and decision time. Neuron. 2014; 84(6): 1329-42. [DOI:10.1016/j.neuron.2014.12.015]
17. Resulaj A, Kiani R, Wolpert DM, Shadlen MN. Changes of mind in decision-making. Nature. 2009; 461(7261): 263-6. [DOI:10.1038/nature08275]
18. Ratcliff R. A theory of memory retrieval. Psychol Rev. 1978; 85(2): 59. [DOI:10.1037/0033-295X.85.2.59]
19. Kiani R, Hanks TD, Shadlen MN. Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J Neurosci. 2008; 28(12): 3017-29. [DOI:10.1523/JNEUROSCI.4761-07.2008]
20. Ratcliff R, Smith PL, Brown SD, McKoon G. Diffusion decision model: Current issues and history. Trends Cogn Sci. 2016; 20(4): 260-81. [DOI:10.1016/j.tics.2016.01.007]
21. Ratcliff R, Rouder JN. Modeling response times for two-choice decisions. Psychol Sci. 1998; 9(5): 347-56. [DOI:10.1111/1467-9280.00067]
22. O'Reilly JX. Time-dependent influence of prior probability: a problem for the drift-diffusion model? J Neurosci. 2011; 31(39): 13697-8. [DOI:10.1523/JNEUROSCI.3253-11.2011]
23. Ratcliff R, McKoon G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 2008; 20(4): 873-922. [DOI:10.1162/neco.2008.12-06-420]
24. Shadlen MN, Newsome WT. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol. 2001; 86(4): 1916-36. [DOI:10.1152/jn.2001.86.4.1916]
25. Kleiner M, Brainard D, Pelli D. What's new in Psychtoolbox-3? 2007.
26. Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci. 2007; 30: 535-74. [DOI:10.1146/annurev.neuro.29.051605.113038]
27. Voss A, Voss J. Fast-dm: A free program for efficient diffusion model analysis. Behav Res Methods. 2007; 39(4): 767-75. [DOI:10.3758/BF03192967]
28. Voss A, Voss J, Lerche V. Assessing cognitive processes with diffusion model analyses: A tutorial based on fast-dm-30. Front Psychol. 2015; 6: 336. [DOI:10.3389/fpsyg.2015.00336]
29. Vafaei S, Ebrahimpour R, Zabbah S. The Relationship Between Pupil Diameter Data and Confidence in Multi-Stage Decisions. The Neuroscience Journal of Shefaye Khatam. 2020; 8(4): 70-9. [DOI:10.29252/shefa.8.4.70]
30. Yeung N, Summerfield C. Shared mechanisms for confidence judgements and error detection in human decision making. In: The cognitive neuroscience of metacognition. Springer; 2014. P. 147-67. [DOI:10.1007/978-3-642-45190-4_7]
31. Mulder MJ, Wagenmakers E-J, Ratcliff R, Boekel W, Forstmann BU. Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J Neurosci. 2012; 32(7): 2335-43. [DOI:10.1523/JNEUROSCI.4156-11.2012]
32. Vafaei S, Esmaily J, Azizi Z, Ebrahimpour R. Confidence Representation of Perceptual Decision by EEG and Eye Data in a Random Dot Motion Task. Neuroscience. 2019; 406: 510-27. [DOI:10.1016/j.neuroscience.2019.03.031]
33. Hawkins GE, Forstmann BU, Wagenmakers E-J, Ratcliff R, Brown SD. Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making. J Neurosci. 2015; 35(6): 2476-84. [DOI:10.1523/JNEUROSCI.2410-14.2015]
34. Wong K-F, Wang X-J. A recurrent network mechanism of time integration in perceptual decisions. J Neurosci. 2006; 26(4): 1314-28. [DOI:10.1523/JNEUROSCI.3733-05.2006]
35. Esmaily J, Ebrahimpour R, Zabbah S. Changing in the Reaction Time Causes the Confidence Matching in Group Decision Making. The Neuroscience Journal of Shefaye Khatam. 2019; 7(4): 61-70. [DOI:10.29252/shefa.7.4.61]
36. Olianezhad F, Zabbah S, Tohidi-Moghaddam M, Ebrahimpour R. Residual information of previous decision affects evidence accumulation in current decision. Frontiers in behavioral neuroscience. 2019; 13: 9. [DOI:10.3389/fnbeh.2019.00009]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Darparnian K, Azizi Z, Ebrahimpour R. Investigating Decision-Making with Insufficient Evidence Using Behavioral Modeling. Shefaye Khatam 2022; 10 (4) :10-19
URL: http://shefayekhatam.ir/article-1-2328-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 4 (Autumn 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4540