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ABSTRACT

Introduction: In recent years, artificial intelligence (Al) techniques are rapidly becoming

clinical practices such as diagnosis and prognosis processes, treatment effectiveness ;

evaluation, and disease monitoring. Previous studies have shown interesting results regarding

the diagnostic efficiency of artificial intelligence methods in differentiating patients with

multiple sclerosis (MS) from healthy individuals or other demyelinating diseases. There is

a lack of a comprehensive systematic review on the role of Al in MS diagnosis. Our aim |

was to conduct a systematic review to document the performance of artificial intelligence in

MS diagnosis. In this study, we conducted a comprehensive and systematic search using the

PubMed database. All original studies that focused on deep learning or artificial intelligence

to analyze methods aimed at diagnosing MS using MRI images were included in our study.

Materials and Methods: For this review, we searched PubMed for studies on the application

of artificial intelligence in MS using MRI images published in English during the period

2010-2023. The search strategy was based on the words Mesh and their combinations. All i

studies were reviewed, but only the most relevant ones were used in this review. Results:

Artificial intelligence, using deep learning methods, can predict the incidence of MS and its

complications based on the risk factors of the disease and reduces the cost and time spent for

various medical tests. Artificial intelligence makes this possible by extracting information ; Keywords:

and performing the necessary processing using methods such as CNN. Conclusion: MS

diagnosis based on new markers and artificial intelligence is a growing field of research i 1. Multiple Sclerosis
with MRI images. All these results show that with advances in artificial intelligence, the i 2. Artificial Intelligence
way MS patients are monitored and diagnosed can change. However, several challenges 3. Deep Learning
remain, including better understanding of information selected by Al algorithms, appropriate i 4. Machine Learning
multicenter and longitudinal validation of results, and practical aspects related to hardware !

and software integration. In general, the critical importance of human supervision to optimize

and fully utilize the potential of artificial intelligence approaches cannot be ignored. |
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28 Centroid Initialization
» Deviation Scoring

30 Clustering Score

31 Mask Approximation
32 Region Scoring
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