[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
نمایه شده در
    
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: مقالات در حال انتشار ::
برگشت به فهرست مقالات برگشت به فهرست نسخه ها
میکروبیوم روده و اسکلروز جانبی آمیوتروفیک
گلاره وهاب زاده ، فرشته گلاب*
الف. گروه فارماکولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران. ب. مرکز تحقیقات سلولی و مولکولی، دانشگاه علوم پزشکی ایران، تهران، ایران. ، fgolab520@gmail.com
چکیده:   (12 مشاهده)
مقدمه: اسکلروز جانبی آمیوتروفیک (ALS) یک بیماری عصبی پیچیده است که تحت تأثیر عوامل ژنتیکی، محیطی و سبک زندگی قرار دارد. تغییرات غذایی مدرن، مانند کاهش مصرف فیبر و افزایش مصرف چربی‌های اشباع و قندهای تصفیه شده، منجر به اختلال در میکروبیوتای روده شده است که با محور روده- مغز در تعامل است و بر سلامت مغز تأثیر می‌گذارد. بیماران ALS اغلب دچار افزایش متابولیسم، کاهش وزن و اختلالات متابولیکی مانند دیس لیپیدمی و اختلال در متابولیسم گلوکز می‌شوند که با پیشرفت بیماری و پیش‌آگهی بدتر مرتبط هستند. اختلال در میکروبیوتای روده ممکن است با افزایش نفوذپذیری روده، التهاب سیستمیک و استرس اکسیداتیو همراه باشد که در پاتوژنز ALS نقش دارد. میکروبیوتای روده، از طریق تولید متابولیت‌هایی مانند اسیدهای چرب زنجیره کوتاه نقش مهمی در سرکوب التهاب و افزایش نوروژنز ایفا می‌کند. با این حال، اختلال در آن می‌تواند باعث التهاب عصبی و آسیب عصبی شود. محور روده- مغز، که توسط مسیرهای عصبی (عصب واگ)، هورمونی (گرلین، لپتین، انسولین) و ایمونولوژیکی (سیتوکین‌ها) واسطه‌گری می‌شود، بر رشد و عملکرد مغز تأثیر می‌گذارد. میکروبیوتای روده از بدو تولد تحت تأثیر رژیم غذایی مادر، شیردهی و آنتی‌بیوتیک‌ها شکل می‌گیرد که همزمان با رشد مغز تکامل می‌یابد. مداخلات تغذیه‌ای، مانند رژیم غذایی مدیترانه‌ای غنی از آنتی‌اکسیدان‌ها و اسیدهای چرب امگا ۳، و درمان‌های هدفمند میکروبیوتا (پروبیوتیک‌ها، پری‌بیوتیک‌ها، پست‌بیوتیک‌ها)، پتانسیل کاهش خطر ALS و تسکین علائم را نشان می‌دهند. نتیجه‌گیری: مطالعات فعلی در مورد میکروبیوتای روده و ALS به دلیل حجم نمونه کم و طرح‌های عمدتاً مشاهده‌ای محدود هستند، که بر نیاز به تحقیقات بزرگتر، طولی و دقیق‌تر تأکید می‌کند. با این وجود، هدف قرار دادن دیس‌بیوز روده نشان دهنده یک رویکرد درمانی امیدوارکننده برای بهبود کیفیت زندگی و به طور بالقوه افزایش طول عمر سالم بیماران مبتلا به ALS است.
 
واژه‌های کلیدی: دستگاه گوارش، آتروفی، اختلالات بلع
     
نوع مطالعه: مروری | موضوع مقاله: نورولوژی
فهرست منابع
1. Kaul M, Mukherjee D, Weiner HL, Cox LM. Gut microbiota immune cross-talk in amyotrophic lateral sclerosis. Neurotherapeutics. 2024: e00469. [DOI:10.1016/j.neurot.2024.e00469]
2. Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. The Lancet Neurology. 2018; 17(1): 94-102. [DOI:10.1016/S1474-4422(17)30401-5]
3. Forsberg K, Graffmo K, Pakkenberg B, Weber M, Nielsen M, Marklund S, et al. Misfolded SOD1 inclusions in patients with mutations in C9orf72 and other ALS/FTD-associated genes. Journal of Neurology, Neurosurgery & Psychiatry. 2019; 90(8): 861-9. [DOI:10.1136/jnnp-2018-319386]
4. Cuffaro F, Lamminpää I, Niccolai E, Amedei A. Nutritional and Microbiota-Based Approaches in Amyotrophic Lateral Sclerosis: From Prevention to Treatment. Nutrients. 2024; 17(1): 102. [DOI:10.3390/nu17010102]
5. He J, Fu J, Zhao W, Ren C, Liu P, Chen L, et al. Hypermetabolism associated with worse prognosis of amyotrophic lateral sclerosis. Journal of Neurology. 2022: 1-9.
6. Mariosa D, Beard JD, Umbach DM, Bellocco R, Keller J, Peters TL, et al. Body mass index and amyotrophic lateral sclerosis: a study of US military veterans. American journal of epidemiology. 2017; 185(5): 362-71. [DOI:10.1093/aje/kww140]
7. Huisman MH, Seelen M, van Doormaal PT, de Jong SW, de Vries JH, van der Kooi AJ, et al. Effect of presymptomatic body mass index and consumption of fat and alcohol on amyotrophic lateral sclerosis. JAMA neurology. 2015; 72(10): 1155-62. [DOI:10.1001/jamaneurol.2015.1584]
8. Zhang J, Cao W, Xie J, Pang C, Gao L, Zhu L, et al. Metabolic Syndrome and Risk of Amyotrophic Lateral Sclerosis: Insights from a Large‐Scale Prospective Study. Annals of Neurology. 2024; 96(4): 788-801. [DOI:10.1002/ana.27019]
9. Denton KM, Hilliard LM, Tare M. Sex-related differences in hypertension: seek and ye shall find. Hypertension. 2013; 62(4): 674-7. [DOI:10.1161/HYPERTENSIONAHA.113.00922]
10. Pardo-Moreno T, Mohamed-Mohamed H, Suleiman-Martos S, Ramos-Rodriguez JJ, Rivas-Dominguez A, Melguizo-Rodriguez L, et al. Amyotrophic lateral sclerosis and serum lipid level association: a systematic review and meta-analytic study. International Journal of Molecular Sciences. 2023; 24(10): 8675. [DOI:10.3390/ijms24108675]
11. Cykowski MD, Takei H, Schulz PE, Appel SH, Powell SZ. TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis. Acta neuropathologica communications. 2014; 2: 1-11. [DOI:10.1186/s40478-014-0171-1]
12. Weerasekera A, Crabbé M, Tomé SO, Gsell W, Sima D, Casteels C, et al. Non-invasive characterization of amyotrophic lateral sclerosis in a hTDP-43A315T mouse model: A PET-MR study. NeuroImage: Clinical. 2020; 27: 102327. [DOI:10.1016/j.nicl.2020.102327]
13. Nakano Y, Hirayama K, Terao K. Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis. Archives of neurology. 1987; 44(1): 103-6. [DOI:10.1001/archneur.1987.00520130079022]
14. Michels S, Kurz D, Rosenbohm A, Peter RS, Just S, Bäzner H, et al. Association of blood lipids with onset and prognosis of amyotrophic lateral sclerosis: results from the ALS Swabia registry. Journal of neurology. 2023; 270(6): 3082-90. [DOI:10.1007/s00415-023-11630-4]
15. Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar J-L, Bonnefont-Rousselot D, Bittar R, et al. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology. 2008; 70(13): 1004-9. [DOI:10.1212/01.wnl.0000285080.70324.27]
16. Dodge JC, Yu J, Sardi SP, Shihabuddin LS. Sterol auto-oxidation adversely affects human motor neuron viability and is a neuropathological feature of amyotrophic lateral sclerosis. Scientific Reports. 2021; 11(1): 803. [DOI:10.1038/s41598-020-80378-y]
17. Zeng P, Zhou X. Causal effects of blood lipids on amyotrophic lateral sclerosis: a Mendelian randomization study. Human molecular genetics. 2019; 28(4): 688-97. [DOI:10.1093/hmg/ddy384]
18. Zinman L, Sadeghi R, Gawel M, Patton D, Kiss A. Are statin medications safe in patients with ALS? Amyotrophic Lateral Sclerosis. 2008; 9(4): 223-8. [DOI:10.1080/17482960802031092]
19. Tognini P. Gut microbiota: a potential regulator of neurodevelopment. Frontiers in cellular neuroscience. 2017; 11: 25. [DOI:10.3389/fncel.2017.00025]
20. Vuong HE, Pronovost GN, Williams DW, Coley EJ, Siegler EL, Qiu A, et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature. 2020; 586(7828): 281-6. [DOI:10.1038/s41586-020-2745-3]
21. Valvaikar S, Vaidya B, Sharma S, Bishnoi M, Kondepudi KK, Sharma SS. Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson's disease model. Neurochemistry International. 2024; 174: 105691. [DOI:10.1016/j.neuint.2024.105691]
22. Maniatis S, Äijö T, Vickovic S, Braine C, Kang K, Mollbrink A, et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 2019; 364(6435): 89-93. [DOI:10.1126/science.aav9776]
23. Smeyers J, Banchi E-G, Latouche M. C9ORF72: what it is, what it does, and why it matters. Frontiers in cellular neuroscience. 2021; 15: 661447. [DOI:10.3389/fncel.2021.661447]
24. Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nature reviews Gastroenterology & hepatology. 2024; 21(4): 222-47. [DOI:10.1038/s41575-023-00890-0]
25. Dhapola R, Beura SK, Sharma P, Singh SK, HariKrishnaReddy D. Oxidative stress in Alzheimer's disease: current knowledge of signaling pathways and therapeutics. Molecular biology reports. 2024; 51(1): 48. [DOI:10.1007/s11033-023-09021-z]
26. Kim NY, Lee HY, Choi YY, Mo SJ, Jeon S, Ha JH, et al. Effect of gut microbiota-derived metabolites and extracellular vesicles on neurodegenerative disease in a gut-brain axis chip. Nano Convergence. 2024; 11(1): 7. [DOI:10.1186/s40580-024-00413-w]
27. Beltrán-Velasco AI, Reiriz M, Uceda S, Echeverry-Alzate V. Lactiplantibacillus (Lactobacillus) plantarum as a complementary treatment to improve symptomatology in neurodegenerative disease: a systematic review of open access literature. International Journal of Molecular Sciences. 2024; 25(5): 3010. [DOI:10.3390/ijms25053010]
28. Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nature Reviews Microbiology. 2024; 22(11): 671-686. [DOI:10.1038/s41579-024-01068-4]
29. Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nature Reviews Immunology. 2024; 24(8): 577-95. [DOI:10.1038/s41577-024-01014-8]
30. Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A comprehensive review on the role of the gut microbiome in human neurological disorders. Clinical microbiology reviews. 2022; 35(1): e00338-20. [DOI:10.1128/CMR.00338-20]
31. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial ecology in health and disease. 2015; 26(1): 26050. [DOI:10.3402/mehd.v26.26050]
32. Varsha N, Varshini R, Sivamani Y, Pokkuluri KS, Elayaperumal S. Altered microbiome influence on the enteric neuromuscular system in amyotrophic lateral sclerosis (ALS). International Review of Neurobiology. 2025; 180: 95-123. [DOI:10.1016/bs.irn.2025.04.006]
33. Jing Y, Bai F, Yu Y. Spinal cord injury and gut microbiota: A review. Life sciences. 2021; 266: 118865. [DOI:10.1016/j.lfs.2020.118865]
34. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014; 156(1): 84-96. [DOI:10.1016/j.cell.2013.12.016]
35. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang R-F. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of neuroinflammation. 2019; 16(1): 53. [DOI:10.1186/s12974-019-1434-3]
36. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019; 570(7762): 462-7. [DOI:10.1038/s41586-019-1291-3]
37. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nature neuroscience. 2017; 20(2): 145-55. [DOI:10.1038/nn.4476]
38. Mazzini L, Fabiola De Marchi M, Niccolai E, Mandrioli J, Amedei A. Gastrointestinal status and microbiota shaping in amyotrophic lateral sclerosis: a New Frontier for Targeting? Exon Publications. 2021: 141-58. [DOI:10.36255/exonpublications.amyotrophiclateralsclerosis.microbiota.2021]
39. Murch S, Cox P, Banack S, Steele J, Sacks O. Occurrence of β‐methylamino‐l‐alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurologica Scandinavica. 2004; 110(4): 267-9. [DOI:10.1111/j.1600-0404.2004.00320.x]
40. Fennema D, Phillips IR, Shephard EA. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metabolism and Disposition. 2016; 44(11): 1839-50. [DOI:10.1124/dmd.116.070615]
41. Szende B, Tyihák E. Effect of formaldehyde on cell proliferation and death. Cell Biology International. 2010; 34(12): 1273-82. [DOI:10.1042/CBI20100532]
42. Dickerson AS, Hansen J, Gredal O, Weisskopf MG. Amyotrophic lateral sclerosis and exposure to diesel exhaust in a Danish cohort. American journal of epidemiology. 2018; 187(8): 1613-22. [DOI:10.1093/aje/kwy069]
43. Béland L-C, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, et al. Immunity in amyotrophic lateral sclerosis: Blurred lines between excessive inflammation and inefficient immune responses. Brain Communications. 2020; 2(2): fcaa124. [DOI:10.1093/braincomms/fcaa124]
44. Sharma VK. Dysbiosis and Neurodegeneration in ALS: Unraveling the Gut-Brain Axis. NeuroMolecular Medicine. 2025; 27(1): 1-23. [DOI:10.1007/s12017-025-08870-0]
45. Boddy SL, Giovannelli I, Sassani M, Cooper-Knock J, Snyder MP, Segal E, et al. The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC medicine. 2021; 19(1): 1-14. [DOI:10.1186/s12916-020-01885-3]
46. Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Military Medical Research. 2017; 4(1): 14. [DOI:10.1186/s40779-017-0122-9]
47. Wu H-J, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes. 2012; 3(1): 4-14. [DOI:10.4161/gmic.19320]
48. Wu Q, Zhang Y, Zhang Y, Xia C, Lai Q, Dong Z, et al. Potential effects of antibiotic‐induced gut microbiome alteration on blood-brain barrier permeability compromise in rhesus monkeys. Annals of the New York Academy of Sciences. 2020; 1470(1): 14-24. [DOI:10.1111/nyas.14312]
49. Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut microbes. 2020; 11(2): 135-57. [DOI:10.1080/19490976.2019.1638722]
50. Obrenovich ME. Leaky gut, leaky brain? Microorganisms. 2018; 6(4): 107. [DOI:10.3390/microorganisms6040107]
51. Kern L, Mastandrea I, Melekhova A, Elinav E. Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration. Cell chemical biology. 2025; 32(1): 25-45. [DOI:10.1016/j.chembiol.2024.08.014]
52. Kakaroubas N, Brennan S, Keon M, Saksena NK. Pathomechanisms of Blood‐brain barrier disruption in ALS. Neuroscience journal. 2019; 2019(1): 2537698. [DOI:10.1155/2019/2537698]
53. Sun J, Zhang Y. Microbiome and micronutrient in ALS: From novel mechanisms to new treatments. Neurotherapeutics. 2024; 21(6): e00441. [DOI:10.1016/j.neurot.2024.e00441]
54. Muresan S, Slevin M. C-reactive protein: an inflammatory biomarker and a predictor of neurodegenerative disease in patients with inflammatory bowel disease? Cureus. 2024; 16(4). [DOI:10.7759/cureus.59009]
55. Yaghoubi F, Momeni J, Modarres Mousavi SM. The Link Between the Gut Microbiome and Alzheimer's Disease. The Neuroscience Journal of Shefaye Khatam. 2024; 13(1): 1-4. [DOI:10.61186/shefa.13.1.1]
56. Gotkine M, Kviatcovsky D, Elinav E. Amyotrophic lateral sclerosis and intestinal microbiota-toward establishing cause and effect. Gut Microbes. 2020; 11(6): 1833-41. [DOI:10.1080/19490976.2020.1767464]
57. Wu S, Yi J, Zhang Yg, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiological reports. 2015; 3(4): e12356. [DOI:10.14814/phy2.12356]
58. Zhang Y-g, Wu S, Yi J, Xia Y, Jin D, Zhou J, et al. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clinical therapeutics. 2017; 39(2): 322-36. [DOI:10.1016/j.clinthera.2016.12.014]
59. Burberry A, Wells MF, Limone F, Couto A, Smith KS, Keaney J, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature. 2020; 582(7810): 89-94. [DOI:10.1038/s41586-020-2288-7]
60. Pongrácová E, Buratti E, Romano M. Prion-like Spreading of Disease in TDP-43 Proteinopathies. Brain Sciences. 2024; 14(11): 1132. [DOI:10.3390/brainsci14111132]
61. Bright F, Chan G, van Hummel A, Ittner LM, Ke YD. TDP-43 and inflammation: implications for amyotrophic lateral sclerosis and frontotemporal dementia. International journal of molecular sciences. 2021; 22(15): 7781. [DOI:10.3390/ijms22157781]
62. Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. International journal of molecular sciences. 2022; 23(20): 12508. [DOI:10.3390/ijms232012508]
63. Odierna GL, Vucic S, Dyer M, Dickson T, Woodhouse A, Blizzard C. How do we get from hyperexcitability to excitotoxicity in amyotrophic lateral sclerosis? Brain. 2024; 147(5): 1610-21. [DOI:10.1093/brain/awae039]
64. Hertzberg VS, Singh H, Fournier CN, Moustafa A, Polak M, Kuelbs CA, et al. Gut microbiome differences between amyotrophic lateral sclerosis patients and spouse controls. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2022; 23(1-2): 91-9. [DOI:10.1080/21678421.2021.1904994]
65. Nicholson K, Bjornevik K, Abu-Ali G, Chan J, Cortese M, Dedi B, et al. The human gut microbiota in people with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2021; 22(3-4): 186-194 [DOI:10.1080/21678421.2020.1828475]
66. Mazzini L, Mogna L, De Marchi F, Amoruso A, Pane M, Aloisio I, et al. Potential role of gut microbiota in ALS pathogenesis and possible novel therapeutic strategies. Journal of clinical gastroenterology. 2018; 52: S68-S70. [DOI:10.1097/MCG.0000000000001042]
67. Niccolai E, Di Pilato V, Nannini G, Baldi S, Russo E, Zucchi E, et al. The gut microbiota-immunity axis in ALS: a role in deciphering disease heterogeneity? Biomedicines. 2021; 9(7): 753. [DOI:10.3390/biomedicines9070753]
68. Zhang H, Li H, Huang B, Wang S, Gao Y, Meng F, et al. Spatiotemporal evolution of pyroptosis and canonical inflammasome pathway in hSOD1G93A ALS mouse model. BMC neuroscience. 2022; 23(1): 50. [DOI:10.1186/s12868-022-00733-9]
69. Bianchi VE, Herrera PF, Laura R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutritional neuroscience. 2021; 24(10): 810-834 [DOI:10.1080/1028415X.2019.1681088]
70. Babakhani S, Hosseini F. Gut microbiota: An effective factor in the Human brain and behavior. The Neuroscience Journal of Shefaye Khatam. 2019; 7(1): 106-18. [DOI:10.29252/shefa.7.1.106]
71. Shahverdi M, Sourani Z, Sargolzaie M, Modarres Mousavi M, Shirian S. An Investigation into the effects of water-and fat-soluble vitamins in Alzheimer's and Parkinson's diseases. The Neuroscience Journal of Shefaye Khatam. 2023; 11(3): 95-109. [DOI:10.61186/shefa.11.3.95]
72. Gardener H, Caunca MR. Mediterranean diet in preventing neurodegenerative diseases. Current nutrition reports. 2018; 7: 10-20. [DOI:10.1007/s13668-018-0222-5]
73. Moradi HR, Taherianfard M, Rashidi M, Javid Z, Hesami SA. Protective effects of wheat sprout on acrylamide toxicity in the hippocampus structure and spatial learning and memory of rat. The Neuroscience Journal of Shefaye Khatam. 2023; 11(2): 10-9. [DOI:10.61186/shefa.11.2.10]
74. Gantenbein KV, Kanaka-Gantenbein C. Mediterranean diet as an antioxidant: the impact on metabolic health and overall wellbeing. Nutrients. 2021; 13(6): 1951. [DOI:10.3390/nu13061951]
75. Kajkolah M, Mousavi F, Asgari A, Asadi A, Abdolmaleki A. Evaluation of Neuropharmacological Effects of Ginger: A Narrative Review. The Neuroscience Journal of Shefaye Khatam. 2022; 10(3): 113-22. [DOI:10.52547/shefa.10.3.113]
76. Fondell E, O'Reilly ÉJ, Fitzgerald KC, Falcone GJ, Kolonel LN, Park Y, et al. Dietary fiber and amyotrophic lateral sclerosis: results from 5 large cohort studies. American journal of epidemiology. 2014; 179(12): 1442-9. [DOI:10.1093/aje/kwu089]
77. da Cunha Germano BC, de Morais LCC, Idalina Neta F, Fernandes ACL, Pinheiro FI, do Rego ACM, et al. Vitamin E and its molecular effects in experimental models of neurodegenerative diseases. International Journal of Molecular Sciences. 2023; 24(13): 11191. [DOI:10.3390/ijms241311191]
78. Diachenko AI, Rodin IA, Krasnova TN, Klychnikov OI, Nefedova LN. The role of vitamin K in the development of neurodegenerative diseases. Biochemistry (Moscow). 2024; 89(Suppl 1): S57-S70. [DOI:10.1134/S0006297924140049]
79. Obrenovich M, Jaworski H, Tadimalla T, Mistry A, Sykes L, Perry G, et al. The role of the microbiota-gut-brain axis and antibiotics in ALS and neurodegenerative diseases. Microorganisms. 2020; 8(5): 784. [DOI:10.3390/microorganisms8050784]
80. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019; 8(3): 92. [DOI:10.3390/foods8030092]
81. Song L, Gao Y, Zhang X, Le W. Galactooligosaccharide improves the animal survival and alleviates motor neuron death in SOD1G93A mouse model of amyotrophic lateral sclerosis. Neuroscience. 2013; 246: 281-90. [DOI:10.1016/j.neuroscience.2013.05.002]
82. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. International journal of environmental research and public health. 2014; 11(5): 4745-67. [DOI:10.3390/ijerph110504745]
83. Petrov D, Mansfield C, Moussy A, Hermine O. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Frontiers in aging neuroscience. 2017; 9: 68 [DOI:10.3389/fnagi.2017.00068]
84. Mishra B, Mishra AK, Mohanta YK, Yadavalli R, Agrawal DC, Reddy HP, et al. Postbiotics: The new horizons of microbial functional bioactive compounds in food preservation and security. Food Production, Processing and Nutrition. 2024; 6(1): 28. [DOI:10.1186/s43014-023-00200-w]
85. Eisen A, Pioro EP, Goutman SA, Kiernan MC. Nanoplastics and Neurodegeneration in ALS. Brain Sciences. 2024; 14(5): 471. [DOI:10.3390/brainsci14050471]
86. González A, Fullaondo A, Odriozola A. Impact of evolution on lifestyle in microbiome. Advances in Genetics. 2024; 111: 149-98. [DOI:10.1016/bs.adgen.2024.02.003]


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
برگشت به فهرست مقالات برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 51 queries by YEKTAWEB 4718