[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
     
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Articles In Press ::
Back to the articles list Back to browse issues page
Advanced Characterization of Effective Connectivity in Temporal Lobe Epilepsy: A Granger Causality Approach Leveraging EEG Phase-Space Dynamics
Saleh Lashkari , Seyyed Soroosh Pedram , Mohammad Ravari , Emad Omouri Sarabi , Seyyed ali Zendehbad , Elias Mazrooei rad *
Department of Biomedical Engineering, Khavaran Institute of Higher Education, Mashhad, Iran , elias_mazrooei@yahoo.com
Abstract:   (19 Views)
Introduction: Temporal Lobe Epilepsy, especially when resistant to drugs, severely restricts individuals affected with the disease. The seizures can manifest as focal aware, focal impaired-awareness, secondarily generalized, or mixed. This variability allows for the estimation of effective connectivity within EEG signals, hence showing the activity patterns of brain regions. Mapping EEG signals into phase space provides meaningful information about brain dynamics and behavior. Thus, the present study aimed at quantifying effective connectivity in EEG signals by phase-space vector analysis and Poincaré sectioning. Materials and Methods: EEG signals from patients with drug-resistant mesial temporal lobe epilepsy were recorded in both pre-ictal and ictal states. Time delay was estimated with the Average Mutual Information (AMI) method, and phase-space reconstruction was carried out in two and three dimensions. A Poincaré section was then applied in 2-D phase space. The P8–O2 derivation was selected as the reference channel and its effective connectivity with five temporal channels (T7–FT9, T8–P8, F8–T8, T7–P7, and F7–T7) was investigated using Granger Causality (GC) indices computed through four different analytical approaches: frequency-domain GC, 2-D phase-space GC, 3-D phase-space GC, and Poincaré-section GC. Results: The GC index significantly increased from pre-ictal to ictal states, as expected from previous studies. Comparison of frequency-domain results with the new phase-space methods showed that the phase-space–based analyses provided more accurate estimation of GC increments. Among the methods compared, the 3-D phase-space approach had the largest increase in mean GC and showed the best performance. The T8–P8 channel pair seemed to bear the most salient changes between the two states and thus might represent the core biomarker site for seizure onset. Conclusion: Nonlinear methodologies of analysis, especially the combination of phase-space reconstruction and GC, represent a very powerful approach to effective connectivity study in EEG signals. These techniques can grasp complex dynamic couplings and directional information flows between different brain regions with good precisions of localizing epileptogenic networks. The proposed nonlinear methods present greater sensitivity and specificity in identifying mesial temporal lobe epilepsy and other seizure disorders compared to standard linear methods.
 
Keywords: Nervous System Diseases, Seizures, Methods
     
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Cai Z, Huang P, Zhou R, Xu C, Wang C. Psychosis of epilepsy: an update on clinical classification and pathophysiological mechanisms. Biomolecules. 2025; 15(1): 56. [DOI:10.3390/biom15010056]
2. Hope OA, Harris KM. Management of epilepsy during pregnancy and lactation. British medical journal (BMJ). 2023; 382: e073335. [DOI:10.1136/bmj-2022-074630]
3. Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, et al. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathology. 2023; 33(2): e13147. [DOI:10.1111/bpa.13147]
4. Rabinovitch A, Avolio JJ, Cook MJ, et al. Ephaptic conduction in tonic-clonic seizures. Frontiers in Neurology. 2024; 15: 1477174. [DOI:10.3389/fneur.2024.1477174]
5. Giovagnoli AR, Avanzini G. Quality of life and memory performance in patients with temporal lobe epilepsy. Acta Neurologica Scandinavica. 2000; 101(5): 295-300. [DOI:10.1034/j.1600-0404.2000.90257a.x]
6. Memarian N, Kim S, Dewar S, Engel J Jr, Staba RJ. Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy. Computers in biology and medicine. 2015; 64: 67-78. [DOI:10.1016/j.compbiomed.2015.06.008]
7. Hejazi M, Motie Nasrabadi A. Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using Granger causality and directed transfer function methods. Cognitive neurodynamics.2019; 13(5): 461-73. [DOI:10.1007/s11571-019-09534-z]
8. Sun L, Chen F, En Z, Zhang H, Zhu J, Li Y, et al. High-performance prediction of epilepsy surgical outcomes based on the genetic neural networks and hybrid iEEG marker. Scientific Reports. 2024; 14: 6198. [DOI:10.1038/s41598-024-56827-3]
9. Mohammadkhani Ghiasvand N, Ghaderi F. Epileptic seizure prediction from spectral, temporal, and spatial features of EEG signals using deep learning algorithms. The Neuroscience Journal of Shefaye Khatam. 2020; 9(1): 110-9. [DOI:10.52547/shefa.9.1.110]
10. Mohammadpoor M, Alizadeh A. Using support vector machines as an intelligent algorithm for detecting seizures from EEG signals. The Neuroscience Journal of Shefaye Khatam. 2021; 9(2): 1-9. [DOI:10.52547/shefa.9.2.1]
11. Rezvani M. O15: Lateralizing and localizing findings in focal epilepsies. The Neuroscience Journal of Shefaye Khatam. 2018; 6(S2): 15-15.
12. Dutta AK, Raparthi M, Alsaadi M, Bhatt MW, Dodda SB, Sandhu M, et al. Deep learning-based multi-head self-attention model for human epilepsy identification from EEG signal for biomedical traits. Multimedia Tools and Applications. 2024; 82(27): 42021-51. [DOI:10.1007/s11042-024-18918-1]
13. Samifar F, Samifar S. Decrypting epilepsy: the deciphering role of electroencephalography. Neuroscience Journal of Shefaye Khatam. 2024; 12(S1): 9-9. [DOI:10.61186/shefa.12.4.S1.9]
14. Fang C, Li X, Na M, Jiang W, He Y, Wei A, et al. Epilepsy lesion localization method based on brain function network. Frontiers in Human Neuroscience. 2024; 18: 1431153. [DOI:10.3389/fnhum.2024.1431153]
15. Lashkari S, Azarnoosh M. Optimal feature space selection in detecting epileptic seizure based on recurrent quantification analysis and genetic algorithm. Smart methods in the electrical industry. 2016; 7(26): 35-44.
16. Kobayashi K, Li LM, Cervenka MC, Pexman JHW, et al. Effective connectivity relates seizure outcome to electrode network propagation patterns. Brain communications. 2024; 6(1): fcad087. [DOI:10.1093/braincomms/fcae035]
17. Lashkari S, Sheikhani A, Golpayegani SMR, Moghimi A, Kobravi HR. Topological feature extraction of nonlinear signals and trajectories and its application in EEG signal classification. Turkish Journal of Electrical Engineering and Computer Sciences. 2018; 26(3): 1329-40. [DOI:10.3906/elk-1708-59]
18. Khaleghi N, Hashemi S, Peivandi M, Ardabili SZ, Behjati M, Sheykhivand S, et al. EEG-based functional connectivity analysis of brain abnormalities: a review study. Informatics in Medicine Unlocked. 2024; 45: 101476. [DOI:10.1016/j.imu.2024.101476]
19. Konvalinka I, Roepstorff A. The two-brain approach: how can mutually interacting brains teach us something about social interaction? Frontiers in human neuroscience. 2012; 6: 215. [DOI:10.3389/fnhum.2012.00215]
20. Varsehi H, Firoozabadi SMP. An EEG channel selection method for motor imagery-based brain-computer interface and neurofeedback using Granger causality. Neural Networks. 2021; 133: 193-206. [DOI:10.1016/j.neunet.2020.11.002]
21. Ding M, Chen Y, Bressler SL. Granger causality: basic theory and application to neuroscience. Handbook of Time Series Analysis. 2006: 437-60. [DOI:10.1002/9783527609970.ch17]
22. Bastos AM, Schoffelen JM. A tutorial review of functional connectivity analysis methods including Granger causality. Frontiers in systems neuroscience. 2016; 9: 175. [DOI:10.3389/fnsys.2015.00175]
23. Handa P, Gupta E, Muskan S, Goel N. A review on software and hardware developments in automatic epilepsy diagnosis using EEG datasets. Expert Systems. 2023; 40(9): e13374. [DOI:10.1111/exsy.13374]
24. Zhou X, Ling BW-K, Zhou Y, Law NF. Phase space reconstruction, geometric filtering-based Fisher discriminant analysis and minimum distance to the Riemannian means algorithm for epileptic seizure classification. Expert Systems and application. 2023; 219: 119613. [DOI:10.1016/j.eswa.2023.119613]
25. Nazarimehr F, Jafari S, Hashemi Golpayegani SMR, Sprott JC. Can Lyapunov exponent predict critical transitions in biological systems? Nonlinear Dynamics. 2017; 88(2): 1493-500. [DOI:10.1007/s11071-016-3325-9]
26. Behbahani S, Jafarnia Dabanloo N, Nasrabadi AM, Dourado A. Epileptic seizure prediction based on features extracted from lagged Poincaré plots. International Journal of Neuroscience. 2024; 134(4): 381-97. [DOI:10.1080/00207454.2022.2106435]
27. van der Heyden MJ, Velis DN, Hoekstra BP, Pijn JP, van Emde Boas W, van Veelen CW, et al. Non-linear analysis of intracranial human EEG in temporal lobe epilepsy. Clinical neurophysiology. 1999; 110(10): 1726-40. [DOI:10.1016/S1388-2457(99)00124-8]
28. Aghtar M, Cheraghzadeh M, Doroudi A, Nasrabadi AM. A Lyapunov spectrum-based hybrid static and dynamic approach for contingency ranking. IET Generation, Transmission & Distribution. 2023; 17(16): 3706-17. [DOI:10.1049/gtd2.12927]
29. Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Progress in neurobiology. 2005; 77(1-2): 1-37. [DOI:10.1016/j.pneurobio.2005.10.003]
30. Lashkari S, Khalilzadeh MA, Hashemi Golpayegani SMR. Determination of the degree of three-dimensional Poincaré section in epileptic seizure detection by EEG. Iranian Journal of Biomedical Engineering. 2015; 9(1): 59-69.
31. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23): e215-20. [DOI:10.1161/01.CIR.101.23.e215]
32. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23): e215-20. [DOI:10.1161/01.CIR.101.23.e215]
33. Lashkari S, Moghimi A, Kobravi H, Younesi M. A novel spike-wave discharges detection framework based on the morphological characteristics of brain electrical activity phase space in WAG/Rij. International Clinical Neuroscience Journal. 2021; 8(3): 127-35. [DOI:10.34172/icnj.2021.36]
34. Lashkari S, Khalilzadeh M, Zendehbad A, Hashemi Gogpayegani MR, Gorji A. Nonlinear features-based evaluation of EEG signal for epileptic seizures detection in human temporal lobe epilepsy. Future Research on AI and IoT. 2025; 1(1): 28-36.
35. Lashkari S, Hashemi Golpayegani SM, Khalilzadeh MA. Determination of the degree of three-dimensional Poincaré section in epileptic seizure detection by EEG. Iranian Journal of Biomedical Engineering. 2015; 9(1): 59-69.
36. Al Fahoum A. Early detection of neurological abnormalities using a combined phase space reconstruction and deep learning approach. Intelligence-Based Medicine. 2023; 8: 100123. [DOI:10.1016/j.ibmed.2023.100123]
37. Xu X, Drougard N, Roy RN. Topological data analysis as a new tool for EEG processing. Frontiers in Neuroscience. 2021; 15: 761703. [DOI:10.3389/fnins.2021.761703]
38. Ahmad I, Wang X, Zhu M, Wang C, Pi Y, Khan JA, et al. EEG-based epileptic seizure detection via machine/deep learning approaches: a systematic review. Computational Intelligence and Neuroscience. 2022; 2022: 6486570. [DOI:10.1155/2022/6486570]
39. Gao Y, Wang X, Potter T, Zhang J, Zhang Y. Single-trial EEG emotion recognition using Granger causality/transfer entropy analysis. Journal of Neuroscience Methods. 2020; 346: 108904. [DOI:10.1016/j.jneumeth.2020.108904]
40. Zabihi M, Kiranyaz S, Rad AB, Katsaggelos AK, Gabbouj M, Ince T. Analysis of high-dimensional phase space via Poincaré section for patient-specific seizure detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2015; 24(3): 386-98. [DOI:10.1109/TNSRE.2015.2505238]
41. Siggiridou E, Kugiumtzis D. Evaluation of Granger causality measures for constructing directed networks from multivariate time series. Entropy (Basel). 2019; 21(11): 1080. [DOI:10.3390/e21111080]
42. Asadolzadeh Shamakhal F, Moghimi A, Kabiri HR, Salehi Fadardi J. Effect of tDCS stimulation on linear and nonlinear features of EEG signal in patients with contamination obsessive-compulsive disorder. The Neuroscience Journal of Shefaye Khatam). 2023; 12(1): 22-33. [DOI:10.61186/shefa.12.1.22]
43. Shin Y, Hwang S, Lee SB, Son H, Chu K, Jung KY, et al. Using spectral and temporal filters with EEG signal to predict the temporal lobe epilepsy outcome after antiseizure medication via machine learning. Scientific Reports. 2023; 13(1): 22532. [DOI:10.1038/s41598-023-49255-2]
44. Mazrooei Rad E, Pazhoumand H, Salmani Bajestani S. Separation of healthy individuals and patients with Alzheimer's disease using the effective communication of brain signals. The Neuroscience Journal of Shefaye Khatam. 2022; 11(1): 1-12. [DOI:10.52547/shefa.11.1.1]
45. Mazrooei E, Azarnoosh M, Ghoshuni M, Khalilzadeh M. Comparison of the function of the Elman neural network and the deep neural network for the diagnosis of mild Alzheimer's disease. The Neuroscience Journal of Shefaye Khatam. 2021; 10(1): 1-11. [DOI:10.52547/shefa.10.1.1]


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 47 queries by YEKTAWEB 4722