[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
نمایه شده در
     
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: مقالات در حال انتشار ::
برگشت به فهرست مقالات برگشت به فهرست نسخه ها
هم نوسانی آلفا و بتای ناحیه پیشانی- آهیانه به‌عنوان پیش‌بینی‌کننده‌های عملکرد توجه در بیماری مالتیپل اسکلروز
مریم روحانی حقیقی ، محمد نامی ، عباس رحیمی جابری ، پیمان حسن پور حقیقی ، خجسته رحیمی جابری*
گروه علوم اعصاب، دانشکده علوم و فناوری‌های نوین پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران ، khrahimijaberi@gmail.com
چکیده:   (52 مشاهده)
مقدمه: مطالعات پیشین همبستگی بین پارامترهای الکتروانسفالوگرافی کمّی در حالت استراحت (RS-qEEG) و کاهش عملکرد شناختی، از جمله سرعت پردازش اطلاعات، در بیماران مبتلا به اسکلروز چندگانه (ام اس) را نشان داده‌اند؛ به‌ویژه این همبستگی با افزایش فعالیت امواج کند در نواحی پیشانی مغز مرتبط بوده است. این مطالعه با هدف بررسی رابطه بین عملکرد در تکالیف توجه و پارامترهای RS-qEEG در بیماران ایرانی مبتلا به ام اس انجام شد. مواد و روش‌ها: 16 شرکت‌کننده با تشخیص قطعی بالینی ام‌اس و در محدوده سنی 18 تا 40 سال وارد این مطالعه مقطعی شدند. داده‌های RS-qEEG در حالت باز بودن چشم‌ها با استفاده از دستگاه تقویت‌کننده 32 کاناله ثبت و سپس جهت تحلیل‌های بعدی پیش‌پردازش شدند. نمرات عملکرد توجه شرکت‌کنندگان با استفاده از مجموعه آزمون های قابل تکرار ارزیابی وضعیت عصب روانشناختی (RBANS) تعیین گردید و سپس با یافته‌های RS-qEEG با استفاده از ضریب همبستگی پیرسون مورد تحلیل قرار گرفت. یافته‌ها: همبستگی مثبت و معنی‌داری بین نمرات آزمون توجه و نمرات z هم نوسانی آلفا و بتای پیشانی- آهیانه (F4-P4) مشاهده شد (0/653=p= 0/006=،r). اگرچه سایر پارامترهای qEEG تمایل به همبستگی منفی با عملکرد توجه نشان دادند، اما این همبستگی از نظر آماری معنی‌دار نبود. نتیجه‌گیری: یافته‌های ما نشان می‌دهد که نمرات z هم نوسانی آلفا و بتای F4-P4 ممکن است به‌عنوان نشانگرهای عصبی بالقوه qEEG برای پیش‌بینی عملکرد توجه در بیماران مبتلا به MS عمل کنند.
واژه‌های کلیدی: الکتروانسفالوگرافی، اختلال عملکرد شناختی، آزمون‌های نوروسایکولوژیک، ریتم آلفا، ریتم بتا
     
نوع مطالعه: پژوهشي | موضوع مقاله: علوم اعصاب شناختی
فهرست منابع
1. Bidadian M, Rasoolzadeh Tabatabaei K, Naser Moghadasi A, Ahmadi F. Exploring the psychological antecedent factors of the transition to secondary progressive multiple sclerosis: a qualitative study. The Neuroscience Journal of Shefaye Khatam. 2020; 8(4): 29-38. [DOI:10.29252/shefa.8.4.29]
2. Dennison L, McCloy Smith E, Bradbury K, Galea I. How do people with multiple sclerosis experience prognostic uncertainty and prognosis communication? A qualitative study. PloS one. 2016; 11(7): e0158982. [DOI:10.1371/journal.pone.0158982]
3. ND SN, Seyedfatemi N, Heydari M, Hoseini A. Self esteem and its associated factors in patients with multiple sclerosis. Iran Journal of Nursing. 2012; 25(78): 14-22.
4. Shiri V, Emami M, Shiri E. Investigating the relationship between selective attention and cognitive flexibility with balance in patients with relapsing-remitting multiple sclerosis. Archives of Rehabilitation. 2018; 18(4): 296-305. [DOI:10.21859/jrehab.18.4.4]
5. Kutzelnigg A, Lassmann H. Cortical lesions and brain atrophy in MS. Journal of the neurological sciences. 2005; 233(1-2): 55-9. [DOI:10.1016/j.jns.2005.03.027]
6. Shaygannejad V, Afshar H. The Frequency of Cognitive Dysfunction among Multiple Sclerosis Patients with Mild Physical Disability. Journal of Isfahan Medical School. 2012; 29(167).
7. Gholami M, Nami M, Shamsi F, Jaberi KR, Kateb B, Jaberi AR. Effects of transcranial direct current stimulation on cognitive dysfunction in multiple sclerosis. Neurophysiologie Clinique. 2021; 51(4): 319-28. [DOI:10.1016/j.neucli.2021.05.003]
8. Dusti F, Frughi Pur M, Sohrabi M, Taheri HR, Saeidi M, Tymuri S. Effect of instructions for internal and far and near external focus of attention on balance of Multiple Sclerosis patients. Medical Journal of Mashhad University of Medical Sciences. 2013; 56(1): 15-20.
9. Chiviacowsky S, Wulf G, Wally R. An external focus of attention enhances balance learning in older adults. Gait & posture. 2010; 32(4): 572-5. [DOI:10.1016/j.gaitpost.2010.08.004]
10. Stapleton T, Ashburn A, Stack E. A pilot study of attention deficits, balance control and falls in the subacute stage following stroke. Clinical rehabilitation. 2001; 15(4): 437-44. [DOI:10.1191/026921501678310243]
11. Calabrese M, Agosta F, Rinaldi F, Mattisi I, Grossi P, Favaretto A, et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Archives of neurology. 2009; 66(9): 1144-50. [DOI:10.1001/archneurol.2009.174]
12. Fiene M, Rufener KS, Kuehne M, Matzke M, Heinze H-J, Zaehle T. Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis. Journal of neurology. 2018; 265(3): 607-17. [DOI:10.1007/s00415-018-8754-6]
13. Llufriu S, Martinez-Heras E, Solana E, Sola-Valls N, Sepulveda M, Blanco Y, et al. Structural networks involved in attention and executive functions in multiple sclerosis. NeuroImage: Clinical. 2017; 13: 288-96. [DOI:10.1016/j.nicl.2016.11.026]
14. Keune PM, Hansen S, Weber E, Zapf F, Habich J, Muenssinger J, et al. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis. Clinical Neurophysiology. 2017; 128(9): 1746-54. [DOI:10.1016/j.clinph.2017.06.253]
15. Prichep L, John E, Ferris SH, Reisberg B, Almas M, Alper K, et al. Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiology of Aging. 1994; 15(1): 85-90. [DOI:10.1016/0197-4580(94)90147-3]
16. Coelli S, Barbieri R, Reni G, Zucca C, Bianchi AM. EEG indices correlate with sustained attention performance in patients affected by diffuse axonal injury. Medical & biological engineering & computing. 2018; 56(6): 991-1001. [DOI:10.1007/s11517-017-1744-5]
17. Ahmadi P, Vahedi H, Ranjbar F, Farhoodi M, Mazooji P, Poorhasan S. Investigating the relation between brain wave pattern and apparent aggression behaviors. J Modern psychological research. 2013; 8(30): 1-12.
18. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018; 17(2): 162-73. [DOI:10.1016/S1474-4422(17)30470-2]
19. Orellana P. The Repeatable Battery for the Assessment of Neuropsychological Status: Mexican-American adolescent normative data: Azusa Pacific University; 2008.
20. Davies F, Edwards A, Brain K, Edwards M, Jones R, Wallbank R, et al. 'You are just left to get on with it': qualitative study of patient and carer experiences of the transition to secondary progressive multiple sclerosis. BMJ open. 2015; 5(7): e007674. [DOI:10.1136/bmjopen-2015-007674]
21. Randolph C. Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Psychological Corporation San Antonio, TX; 1998. [DOI:10.1037/t15149-000]
22. Alipour A, Mozhdehfarahbakhsh A, Nouri S, Petramfar P, Tahamtan M, Kamali A-M, et al. Studies on the bottom-up and top-down neural information flow alterations in neurodegeneration. Journal of Alzheimer's Disease. 2020; 78(1): 169-83. [DOI:10.3233/JAD-200590]
23. Vachon-Presseau E, Achim A, Benoit-Lajoie A. Direction of SMR and beta change with attention in adults. Journal of Neurotherapy. 2009; 13(1): 22-9. [DOI:10.1080/10874200802668283]
24. Lubar JO, Lubar JF. Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting. Biofeedback and self-regulation. 1984; 9(1): 1-23. [DOI:10.1007/BF00998842]
25. Benedict RH, DeLuca J, Phillips G, LaRocca N, Hudson LD, Rudick R, et al. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Multiple Sclerosis Journal. 2017; 23(5): 721-33. [DOI:10.1177/1352458517690821]
26. Babiloni C, Del Percio C, Capotosto P, Noce G, Infarinato F, Muratori C, et al. Cortical sources of resting state electroencephalographic rhythms differ in relapsing-remitting and secondary progressive multiple sclerosis. Clinical Neurophysiology. 2016; 127(1): 581-90. [DOI:10.1016/j.clinph.2015.05.029]
27. Hardmeier M, Schoonheim MM, Geurts JJ, Hillebrand A, Polman CH, Barkhof F, et al. Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography. 2012. [DOI:10.1371/journal.pone.0042087]
28. Tewarie P, Schoonheim MM, Stam CJ, van der Meer ML, van Dijk BW, Barkhof F, et al. Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis. PloS one. 2013; 8(7): e69318. [DOI:10.1371/journal.pone.0069318]
29. Vecchio F, Miraglia F, Porcaro C, Cottone C, Cancelli A, Rossini PM, et al. Electroencephalography-derived sensory and motor network topology in multiple sclerosis fatigue. Neurorehabilitation and Neural Repair. 2017; 31(1): 56-64. [DOI:10.1177/1545968316656055]
30. Putman P, Verkuil B, Arias-Garcia E, Pantazi I, van Schie C. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cognitive, Affective, & Behavioral Neuroscience. 2014; 14(2): 782-91. [DOI:10.3758/s13415-013-0238-7]
31. Derryberry D, Reed MA. Anxiety-related attentional biases and their regulation by attentional control. Journal of abnormal psychology. 2002; 111(2): 225. [DOI:10.1037/0021-843X.111.2.225]
32. Loo SK, Makeig S. Clinical utility of EEG in attention-deficit/hyperactivity disorder: a research update. Neurotherapeutics. 2012; 9(3): 569-87. [DOI:10.1007/s13311-012-0131-z]
33. Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience & Biobehavioral Reviews. 2007; 31(3): 377-95. [DOI:10.1016/j.neubiorev.2006.10.004]
34. Schutter DJ, Van Honk J. Electrophysiological ratio markers for the balance between reward and punishment. Cognitive Brain Research. 2005; 24(3): 685-90. [DOI:10.1016/j.cogbrainres.2005.04.002]
35. Angelidis A, van der Does W, Schakel L, Putman P. Frontal EEG theta/beta ratio as an electrophysiological marker for attentional control and its test-retest reliability. Biological psychology. 2016; 121: 49-52. [DOI:10.1016/j.biopsycho.2016.09.008]
36. Tabatabaei SM. Relationship between Educational Level and the Activity of Brain Waves with the Cognitive Performances of Alzheimer Patients in East Azerbaijan. Medical Journal of Tabriz University of Medical Sciences. 2015; 37(5): 26-31.
37. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature reviews neuroscience. 2002; 3(3): 201-15. [DOI:10.1038/nrn755]
38. Houdayer E, Comi G, Leocani L. The neurophysiologist perspective into MS plasticity. Frontiers in neurology. 2015; 6: 193. [DOI:10.3389/fneur.2015.00193]
39. Von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International journal of psychophysiology. 2000; 38(3): 301-13. [DOI:10.1016/S0167-8760(00)00172-0]
40. Friston KJ. Functional and effective connectivity: a review. Brain connectivity. 2011; 1(1): 13-36. [DOI:10.1089/brain.2011.0008]
41. Gruzelier JH. EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Reviews. 2014; 44: 124-41. [DOI:10.1016/j.neubiorev.2013.09.015]


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
برگشت به فهرست مقالات برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 49 queries by YEKTAWEB 4735