

The 2nd International Neurotrauma Congress & the 4th International Roads Safety Congress

Shefa Neuroscience Research Center, Tehran, Iran, 18-20 February, 2015

The Neuroscience Journal of Shefaye Khatam

Volume 2, No. 4, Suppl. 3

Poster Presentation

Neuroprotective Effect of Noscapine on Cerebral Oxygen-Glucose Deprivation Injury

Gelareh Vahabzadeh^{1*}, Soltan-Ahmad Ebrahimi², Nahid Rahbar-Roshandel²

¹Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.

²Department of Pharmacology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Published: 18 February, 2015

Abstract

The present study aims to investigate the effect of noscapine (0.5-2.5 μ M), an alkaloid from the opium poppy, on primary murine fetal cortical neurons exposed to oxygen–glucose deprivation (OGD), an in vitro model of ischemia. Cells were transferred to glucose-free DMEM (Dulbecco's Modified Eagle Medium) and were exposed to hypoxia in a small anaerobic chamber. Cell viability and nitric oxide production were evaluated by MTT assay and the Griess method, respectively. 0.5 μ M noscapine were significantly inhibited the neurotoxicities produced by 30 min OGD. The neurotoxicity decreased by noscapine treatment in the concentration-dependent manner. Pretreatment of cells with MK-801(10 μ M), a non-competitive NMDA (N-Methyl-D-aspartate) antagonist, and nimodipine (10 nM), a L-type Ca^{2+} channel blockers, increased cell viability after 30 min OGD, while the application of NBQX (30 μ M), a selective AMPA(- α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-kainate receptor antagonist partially attenuated cell injury. Noscapine attenuated nitric oxide (NO) production in cortical neurons after 30 min OGD. We concluded that noscapine had a neuroprotective effect, which could be due to its interference with multiple targets in the excitotoxicity process. These effects could be mediated partially by a decrease in NO production.

Keywords: Noscapine, NO, Oxygen-Glucose Deprivation, Cortical Culture.

***Corresponding Author:** Gelareh Vahabzadeh

E-mail: Vahabzadeh.g@iums.ac.ir