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Introduction: Peripheral nervous system has an innate regenerative ability that many factors are 

involved in its formation, such as Schwann cells, growth factors, and extracellular matrix. However, 

in severe injuries, peripheral nerve regeneration process is very weak and ineffective and therapeutic 

measures are needed for nerve regeneration. Current therapeutic methods have several limitations 

and low efficacy. In this regard, one of the most important research approaches is using stem cells 

in the regeneration of peripheral nerves. Stem cells have a potential to differentiate into Schwann 

cells. Stem cells modulate the immune system by secreting neurotrophic factors and help formation 

of myelin layer during peripheral nerve regeneration. Researches in this field also represent these 

capabilities and promise a bright future in the application of stem cells in the regeneration of 

peripheral nerve injuries. Conclusion: Regarding the importance of stem cells in the future of 

regenerative medicine and neurological tissue engineering, understanding of characteristics of stem 

cells as well as recognition of the extraction resource and their abilities in promoting the peripheral 

nerve regeneration are necessary. This paper is a review of the most important progress that has been 

achieved in this field. 
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ه چــــــــكيد

كليد واژه‌ها:
1. اعصاب محیطی 

2. ترمیم 
3. سلول‌های شوآن 
4. سلول‌های بنیادی

مقدمه: سیستم اعصاب محیطی از قابليت ترميم ذاتي برخوردار است که بسياري از عوامل مانند سلول‌های 
شوآن، فاکتورهای رشد و ماتریکس خارج سلولی در شكل‌گيري آن درگير هستند. هرچند در صدمه‌هاي 
شدید، فرایند ترمیم اعصاب محیطی بسیار ضعیف و ناکارآمد است و اقدام‌هاي درمانی جهت بازسازی عصب 
مورد نیاز هستند. روش‌های درمانی حاضر محدودیت‏های متعدد و کارایی پایینی دارند. در این راستا، یکی 
از مهم ترین رویکردهای پژوهشی به کارگیری سلول‏های بنیادی در ترمیم اعصاب محیطی است. يكي از 
مزاياي اين سلول‌ها، توانايي آن‌ها براي تمايز به سلول‌هاي شوآن مي‌باشد. سلول‌هاي بنيادي عملكرد سيستم 
ايمني را توسط ترشح فاکتورهای نوروتروفیک تعديل ميك‌نند و به تشکیل لایۀ میلین در طي ترميم  اعصاب 
محیطی كمك ميك‌نند. تحقیقات در این زمینه نیز اين قابلیت‏ها را نشان مي‌دهند و آینده روشنی را در 
کاربرد سلول‌های بنیادی در ترمیم جراحت‌هاي اعصاب محیطی نوید می‎دهند. نتیجه گیری: با توجه به 
اهميت سلول‏های بنیادی در آیندۀ پزشکی ترمیمی و مهندسی بافت عصبی، درك ویژگی‎های سلول‎های 
بنیادی و نیز شناخت منابع استخراج و قابلیت‌های آن‌ها در پیشبرد ترمیم اعصاب محیطی ضروری مي‌باشند. 

اين مقاله مروري است بر مهم‌ترين پيشرفت‌هايي که در این زمينه به دست آمده است.
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مقدمه
جراحت‌هاي اعصاب محیطی

به  ابتلاء  موارد  کل  از   %2/8 حدود  محیطی  اعصاب  صدمات 
جراحت‌های ناشی از تروما را شامل می‌شود که می‌تواند منجر 
به معلولیت‌های قابل ملاحظه‌ای گردد )1(. فرایند ترمیم اعصاب 
محیطی روند پیچیده‌ای است که با تغییرهاي وسیعی در سطح 

نورون‌ها و سلول‌های شوآن1 همراه می‌باشد. 
ارتباط  قطع  و  محیطی  اعصاب  شدید  جراحت‌هاي  دنبال  به 
آکسون‌ها با جسم سلولی نورون‌های مربوطه، قطعۀ انتهايي عصب 
نام تحلیل والرین2 می‌گردد.  با  آسیب دیده وارد روند تخریبی 
تحلیل والرین از طریق تخریب قطعۀ انتهايي عصب آسیب دیده، 
اندام‌های  ترمیم آکسون‌ها و عصب دهی مجدد  برای  را  زمینه 
هدف مساعد می‌سازد )3 ،2(. همزمان سلول‌های شوآن ساکن 
قطعۀ انتهايي عصب آسیب دیده، ضمن تمایززدایی به فنوتیپ 
غیرمیلینه کننده، وارد روند تکثیر شده و از طریق فاگوسیتوز 
جراحت سبب  محل  به  خونی  ماکروفاژهای  همچنین جذب  و 
پاکسازی بقایای سلولی و میلین ناشی از تحلیل والرین می‌شوند. 
به  خود  پایۀ  غشای  امتداد  در  مذکور  شوآن  سلول‌های  سپس 
صورت ساختاری لوله‌ای شکل با نام نوار بونگنر3 آرایش میی‌ابند 
به  کانال‌ها  این  از خلال  عبور  با  ترمیم  آکسون‌های در حال  و 

سمت اندام هدفشان هدایت می‌شوند )5 ،4(. 
علاوه بر این، سلول‌های شوآن از طریق ترشح برخی فاکتورهای 
رشد همچون فاکتور رشد عصبی4 و فاکتور نوروتروفیک مشتق شده 
از مغز5 )8-6(، ساخت مولکول‌های ماتریکس خارج سلولی مانند 
لامینین و فیبرونکتین )10-8(، تنظیم پاسخ ایمنی بدن )11( و 
همچنین میلینه کردن آکسون‌های جدید )12( سبب پیشبرد روند 

ترمیم اعصاب محیطی و بازیابی عملکردی می‌شوند. 
از  استفاده  منظور  به  بسیاری  پژوهش‌های  فوق،  دلایل  بنابر 
اعصاب محیطی  درمان جراحت‌هاي  روند  در  سلول‌های شوآن 

انجام گرفته است )14 ،13(. با این حال برخی محدودیت‌های 
تکنیکی در زمینۀ استخراج و کشت سلول‌های شوآن و در نتیجه 
عدم امکان دستیابی به تعداد کافی از سلول‌های شوآن فرد بیمار 
)اتولوگ( در یک بازۀ زمانی کوتاه، کاربرد کلینیکی این سلول‌ها 
دلیل  همین  به   .)15،  16( است  ساخته  مواجه  چالش  با  را 
پژوهشگران در پی منابع سلولی جایگزین هستند و سلول‌های 
گزینه‌های  فردشان  به  منحصر  ویژگی‌های  دلیل  به  بنیادی 
مناسبی به نظر می‌رسند. نتایج پژوهش‌های اخیر نیز مؤید نقش 
مثبت سلول‌های بنیادی در پیشبرد روند ترمیم اعصاب محیطی 

می‌باشد )17 ،16(.
سلول‌های بنیادی

رده‌های  سایر  از  بنیادی  سلول‌های  کنندۀ  متمایز  ویژگی  دو 
طریق  از  خود  منابع  نوسازی  در  آن‌ها  توانایی  شامل  سلولی 
تقسیم میتوز )خودنوزايي(6 و همچنین امکان تمایز آنها به دیگر 
این  به  بسته  بنیادی  )17(. سلول‌های  می‌باشند  انواع سلول‌ها 
که در چه مرحله‌ای از روند تکوین مورد استخراج قرار گیرند به 
سه گروه سلول‌های بنیادی رویانی7، جنینی8 و بالغ9 طبقه بندی 
براساس توان  را  این سلول‌ها  می‌شوند )18(. همچنین می‌توان 
تمایزی آنها به سلول‌های بنیادی همه توان10، سلول‌های بنیادی 

پرتوان11 و سلول‌های بنیادی چند توان12 تقسیم نمود )19(. 
ساز و کار تأثیر سلول‌های بنیادی بر روند ترمیم اعصاب 

محیطی
اعصاب  ترمیم  روند  بر  بنیادی  سلول‌های  اثر  مکانیسم  هنوز 
سلول‌های   .)20( است  نشده  روشن  کامل  طور  به  محیطی 
بنیادی قادر هستند تا از طریق تمایز به سلول‌های شوآن )21( 
و کمک به میلینه کردن آکسون‌های ترمیم شده )22(، ترشح 
ماتریکس  مولکول‌های  ساخت   ،)23( نوروتروفیک  فاکتورهای 
روند  بر   )25( بدن  ایمنی  پاسخ  تعدیل  و   )24( سلولی  خارج 

ترمیم اعصاب محیطی تأثیر بگذارند )تصویر 1(.

1 Schwann cells
2 Wallerian degeneration
3 Bands of Büngner
4 Nerve growth factor
5 Brain-derived neurotrophic factor
6 Self-renewal

7 Embryonic stem cells
8 Fetal stem cells
9 Adult stem cells
10 Totipotent
11 Pluripotent
12 Multipotent

تصويــر 1- مكانيســم‌هاي پيشــبرد رونــد ترميــم اعصــاب 
محيطــي بــه وســيلۀ ســلول‌هاي بنيــادي.
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 این سلول‌ها این قابلیت را دارند که به همان شکل بنیادی و تمایز 
نیافته و یا به صورت تمایز يافته به سلول‌های شوآن مانند13 در 
محیط کشت القایی، به بیماران پیوند زده شوند )26(. سلول‌های 
بنیادی را می‌توان به صورت تزریق سیستمیک، تزریق موضعی 
به محل جراحت و یا پس از کاشت آن‌ها بر روی داربست‌های 
یا  و  عصب15  کنندۀ  هدایت  کانال‌های  انواع  همچون  زیستی14 
محل جراحت عصبی  به  زدایی شده  سلول  گرافت‌های عصبی 

پیوند زد )27 ،26(. 

منابع سلول‌های بنیادی مورد استفاده در ترمیم اعصاب محیطی 
به  جهت  بنیادی  سلول‌های  ایده‌آل  منبع  یک  خصوصیات  از 
استخراج  و  دسترسی  امکان  به  می‌توان  کلینیک  در  کارگیری 
آسان، قابلیت گسترش و تکثیر مناسب در محیط کشت، توانایی 
و  میزبان  بدن  بافت‌های  در  مناسب  گزینی  لانه  و  ماندن  زنده 
عدم تومورزایی اشاره کرد )29 ،28(. سلول‌های بنیادی چربی، 
پوست، فولیکول مو و بند ناف از جمله منابعی هستند که از این 

منظر مورد توجه قرار دارند )جدول 1(. 

13 Schwann-like
14 Biological scaffolds
15 Conduit

جدول 1- منابع سلول‌هاي بنيادي مورد استفاده در ترميم اعصاب محيطي.
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سلول‌های بنیادی رویانی 
سلول‌های بنیادی رویانی سلول‌های پرتوانی هستند که از تودۀ 
سلولی داخلی16 بلاستوسیست استخراج شده و قابلیت تمایز به 
انواع سلول‌های مشتق شده از سه لایۀ جنینی از جمله سلول‌های 
عصبی را دارند )30(. این سلول‌ها جمعیتی یک دست هستند 
 .)31( برخوردارند  بالایی  بسیار  تکثیر  و  تمایز  قدرت  از  که 
سلول‌های بنیادی رویانی قابلیت تمایز به نورون‌ها و سلول‌های 
گلیال سیستم اعصاب محیطی را دارند و در مدل‌های جانوری 
اثرات مثبتی را بر پیشبرد روند ترمیم و میلینه کردن اعصاب 

محیطی نشان داده‌اند )32-35(.
موش  عصب  فاقد  عضلۀ  به  روياني  بنیادی  سلول‌های  پیوند 
صحرایی سبب تمایز آن‌ها به سلول‌هایی با شاخص‌های نورون‌های 
حرکتی شده که با ایجاد پایانه‌های کولینرژیک بر روی عضله‌ها از 
آتروفی عضلاني جلوگیری کرده‌اند )37 ،36(. پیوند این سلول‌ها 
بوده  همراه  مشابهی  نتایج  با  نیز  صحرایی  موش‌های  نخاع  به 
سلول‌های  پیوند  طریق  از  نیز  محققین  از  گروهی   .)38( است 
به  بنیادی رویانی  از تمایز سلول‌های  بنیادی مزانشیمی حاصل 
نتایج مثبتی در بهبود روند ترمیم اعصاب محیطی دست یافته‌اند 
بافت  و  الکتروفیزیولوژیک  پارامترهای حرکتی،  بهبود  که شامل 
شناسی بوده است )39(. با این حال کاربرد بالینی این سلول‌ها 
به دلیل مشکلات عدیده‌ای همچون موانع قانونی و اخلاقی، خطر 
تمایز به انواع سلول‌های ناخواسته و تومورزایی و همچنین نیاز 
به سرکوب سیستم ایمنی میزبان جهت جلوگیری از رد پیوند با 

چالش‌های جدی مواجه است )40(.
سلول‌های بنیادی عصبی

هستند  قادر  عصبی17  بنیادی  سلول‌های  طبیعی  طور  به 
سلول‌های  و  نورون‌ها  به  محیطی  کننده‌های  القاء  تأثیر  تحت 
به  رویان  تکامل  دورۀ  در طی  سلول‌ها  این  یابند.  تمایز  گلیال 
طور  به  آن  از  پس  و  مرکزی  عصبی  سیستم  در  وسیعی  طور 
محدودتری در برخی نواحی مغز افراد بالغ همچون هیپوکامپ، 
نواحی زیر بطنی18 و مناطقی در مجاورت جسم مخطط19 حضور 

دارند )41-43(. 
در پژوهش‌های متعددی اثرات مثبت پیوند این سلول‌ها بر روند 
ترمیم جراحت‌هاي اعصاب محیطی نشان داده شده است. کاشت 
آن  پیوند  و  کلاژنی  داربست‌های  در  عصبی  بنیادی  سلول‌های 
به  سلول‌ها  این  تمایز  موجب  دیده،  آسیب  سیاتیک  عصب  به 
از دو  سلول‌های شوآن مانندی شده است که توانسته‌اند بیش 
هستند  قادر  عصبی  بنیادی  سلول‌های   .)34( بمانند  زنده  ماه 
آسيب  اعصاب محیطی  به  پیوند  از  یا پس  و  در محیط کشت 
ديدۀ حیوانات به نورون‌های حرکتی با توانایی بیان آنزیم کولین 
استیل ترانسفراز20 )شاخص نورون‌های حرکتی( تمایز یابند. این 
آکسون‌های کولینرژیک ضمن ایجاد سیناپس با سایر نورون‌ها، 
همچون  هدف  عضله‌هاي  سمت  به  را  خود  میلینه  انشعابات 

عضلۀ گاستروکنمیوس21 گسترش مي‌دهند و با عصب دهی به 
آن‌ها، سبب مهار آتروفی و بهبود پارامترهای الکترومیوگرافی22 
و حرکتی می‌شوند )46-44(. از معایب این سلول‌ها دشواری در 

استخراج و خطر تومورزایی آن‌ها است.
سلول‌های بنیادی جنینی 

ژلۀ  آمنیوتیک، خون و  مایع  از قبیل پرده و  بافت‌های جنینی 
وارتون23 بند ناف که هنگام زایمان همراه با نوزاد خارج می‌شوند 
منابع خوب و در دسترسی جهت استخراج سلول‌های بنیادی به 
خصوص سلول‌های بنیادی مزانشیمی هستند. سلول‌های بنیادی 
جنینی به خوبی در محیط کشت گسترش یافته و با توجه به 
قابلیت تمایزشان به سلول‌های عصبی )47( گزینه‌های مناسبی 

جهت به کارگیری در روند ترمیم اعصاب محیطی می‌باشند. 
الف- سلول‌های بنیادی مزانشیمی ژلۀ وارتون

جمله  از  ناف  بند  وارتون  ژلۀ  مزانشیمی  بنیادی  سلول‌های 
سلول‌های بنیادی جنینی هستند که به دلیل امكان دسترسی 
توانایی  و  فنوتیپ عصبی  با  به سلول‌هایی  تمایز  قابلیت  آسان، 
ترشح فاکتورهای نوروتروفیک، منبع مناسبی براي به کارگیری 
اعصاب محیطی هستند )48(.  در درمان جراحت‌هاي سیستم 
و  تمایز  و  تکثیر  قدرت  مانند  ویژگی‌هایی  نظر  از  این سلول‌ها 
همچنین قابلیت تنظیم سیستم ایمنی بدن شبیه به سلول‌های 
بنیادی مزانشیمی مغز استخوان بوده )49( و همانند آن‌ها امکان 
استفاده به صورت پیوند آلوژنیک24 )پیوند سلول‌های فرد دیگر( 

را فراهم می‌آورند )50 ،49(. 
سلول‌های بنیادی مزانشیمی ژلۀ وارتون خطر تومورزایی اندکی 
داشته و می‌توان آن‌ها را به همان شکل بنیادی و تمایز نیافته 
و یا به صورت تمایز داده شده در محیط کشت مورد استفاده 
قرار داد. این سلول‌ها در صورت قرارگیری در محیط‌های کشت 
تمایزی مناسب، می‌توانند به سلول‌هایی با فنوتیپ و شاخص‌های 
 .)51،  52( یابند  تمایز  گلیا  سلول‌های  و  نورون‌ها  با  مشابه 
حیوانی  مدل‌های  در  وارتون  ژلۀ  مزانشیمی  بنیادی  سلول‌های 
آسیب اعصاب محیطی، اثرات مثبتی را در پیشبرد روند ترمیم 
اعصاب آسیب دیده نشان داده‌اند )54 ،53(. همچنین محققین 
به سلول‌های  را در محیط کشت  توانسته‌اند سلول‌های مذکور 
شوآن مانندی با قابلیت تولید فاکتورهای نوروتروفیک و تحریک 

جوانه زنی آکسونی تمایز دهند )48(.
ب- سلول‌های بنیادی مزانشیمی مایع آمنیوتیک

انواع  دیگر  از  آمنیوتیک  مایع  مزانشیمی  بنیادی  سلول‌های 
سلول‌های جنینی هستند که ضمن دارا بودن ویژگی‌های هر دو 
گروه سلول‌های بنیادی مزانشیمی و سلول‌های بنیادی عصبی، 
فاکتورهای  برخی  ترشح  و  عصبی  سلول‌های  به  تمایز  قابلیت 
این  پیوند  مثال  طور  به   .)55( داده‌اند  نشان  را  نوروتروفیک 
سلول‌ها به عصب سیاتیک له شدۀ موش صحرایی سبب تقویت 

16 Inner cell mass
17 Neural stem cells
18 Subventricular zone
19 Striatum
20 Choline acetyltransferase

21 Gastrocnemius muscle
22 Electromyography (EMG)
23 Wharton’s jelly
24 Allogenic
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عملکردهای  بهبود  و  آکسون‌ها  شدن  میلینه  و  ترمیم  روند 
حرکتی شده است )57 ،56(. با این حال قابلیت زنده ماندن این 
سلول‌ها در بافت‌های میزبان ضعیف می‌باشد و به همین دلیل 
و  التهابی  پاسخ‌های  تعدیل  با  تا  پژوهشگران در تلاش هستند 
مهار مرگ برنامه ریزی شده از طریق تیمار با فاکتورهای رشد 
و عوامل ضد التهاب و یا ایجاد تغییرات ژنتیکی در این سلول‌ها 

قابلیت بقاي آن‌ها را پس از پیوند افزایش دهند )57 ،23(.
از  خوبی  بسیار  منابع  جنینی  بنیادی  سلول‌های  مجموع  در 
بنیادی  با سلول‌های  مقایسه  بنیادی هستند که در  سلول‌های 
بالغ به دلیل سن کم و مواجهۀ اندک با عوامل محیطی و بیماریزا، 
ساختار ژنتیکی سالم و دست نخورده تری دارند، مضاف بر این 
که استفاده از آن‌ها منع اخلاقی و قانونی ندارد. امید می‌رود در 
آینده با تشکیل بانک بافت‌های جنینی برای افراد و در نتیجه 
دسترسی آسان به سلول‌های بنیادی جنینی اتولوگ، مشکلات 

فعلی مربوط به رد پیوند برطرف گردد.
سلول‌های بنیادی پرتوان القایی 

ژنتیکی  دستکاری  وسیلۀ  به  بنیادی  سلول‌های  از  نوع  این 
همچون  طبیعی  سوماتیک  سلول‌های  از  تمایززدایی  و 
بنیادی  سلول‌های  می‌آیند.  دست  به  پوست  فیبروبلاست‌های 
پرتوان القایی )iPSCs(25 همانند سلول‌های رویانی قادر هستند 
تا به سلول‌های مشتق از هر سه لایۀ جنینی تمایز یابند )58( و 
در عین حال مشکلات مربوط به رد پیوند و موانع قانونی مربوط 
به استفاده از سلول‌های رویانی را نیز ندارند. تاکنون تحقیقات 
متعددی به منظور استفاده از این سلول‌ها در ترمیم جراحت‌هاي 

اعصاب محیطی انجام پذیرفته است. 
پیوند سلول‌های بنیادی پرتوان القایی به محل جراحت اعصاب 
محیطی، به طور مستقیم و یا پس از کاشت بر روی داربست‌های 
زیستی و یا پیوند سلول‌های ستیغ عصبی و یا سلول های شوآن 
تقویت  سبب  القایی  پرتوان  بنیادی  های  سلول  از  یافته  تمایز 
ترمیم و میلینه شدن آکسون‌های در حال رشد شده است )61-

پایین  تمایزی  بازده  همچون  مشکلاتی  حال  این  با   .)22،  59
)62( و احتمال تومورزایی بالا )63( تاکنون کاربرد کلینیکی این 

سلول‌ها را با چالش‌های جدی مواجه ساخته است.
سلول‌های بنیادی پوست

لایه درم پوست حاوی سلول‌های بنیادی چند توانی است که با 
کمترین آسیب به فرد بیمار، قابل استخراج و گسترش در محیط 
کشت می‌باشند )64(. سلول‌های بنیادی پوست26 شباهت زیادی 
به سلول‌های ستیغ عصبی رویان دارند که خود اجداد سلول‌های 
شوآن هستند )65(. این سلول‌ها در محیط کشت قابلیت تمایز 
نورون‌های  جملۀ  از  عصبی  ستیغ  منشاء  با  سلول‌های  انواع  به 

اعصاب محیطی و سلول‌های شوآن را دارند. 
تمایز  یا  و  نیافته  تمایز  صورت  به  پوست  بنیادی  سلول‌های   
داده شده در محیط کشت اثرات مثبتی بر روند ترمیم اعصاب 

نوروگلین27  با  این سلول‌ها  تیمار  محیطی داشته‌اند )67 ،66(. 
سلول‌هاي  عملكرد  و  تمايز  در  اساسي  نقشي  كه  )پروتئيني 
به سلول‌هایی  آن‌ها  تمایز  دارد( در محیط کشت سبب  شوآن 
تیمار  همین  و  شده  شوآن  سلول‌های  کارکرد  و  شاخص‌ها  با 
مشتق  شوآن  سلول‌های  بقاي  افزایش  سبب  زنده  محیط  در 
سلول‌های   .)68،  69( است  شده  پوست  بنیادی  سلول‌های  از 
شوآن مشتق از سلول‌های بنیادی پوست پس از پیوند به عصب 
ممزوج  عصب  بافت  با  توانسته‌اند  موش  دیدۀ  آسیب  سیاتیک 
تبدیل شوند )69(. همچنین  فنوتیپ میلینه کننده  به  و  شده 
نیز  محیطی  اعصاب  مزمن  آسیب  مدل  در  سلول‌ها  این  پیوند 
سبب تقویت روند ترمیم شده که با بهبود شاخص‌های حرکتی 
و بافت شناسی همراه بوده است )70(. با این حال هنوز شواهد 
رفتاری و عملکردی کافی مبنی بر بازیابی عملکردی قابل قبول 

به دنبال استفاده از این سلول‌ها ارائه نگردیده است.
سلول‌های بنیادی مو28

فولیکول‌های مو حاوی سلول‌های بنیادی پرتوانی با منشاء ستیغ 
عصبی هستند که در محیط کشت قابلیت تمایز به نورون‌ها و 
سلول‌های گلیا را دارند )71(. از مزایای این سلول‌ها می‌توان به 
پتانسیل اندک آن‌ها در ایجاد بدخیمی، قابلیت پیوند اتولوگ و 
در نتیجه عدم رد پیوند و همچنین عدم وجود موانع اخلاقی و 
قانونی جهت استفاده از آن‌ها اشاره نمود. تا به حال مطالعه‌هاي 
ترمیم  منظور  به  سلول‌ها  این  از  استفاده  زمینۀ  در  اندکی 
مثال  طور  به  است.  گرفته  انجام  محیطی  اعصاب  صدمه‌هاي 
کاشت سلول‌های بنیادی فولیکول مو در عمق پوست جوندگان 
بافت  و  خونی  عروق  سازندۀ  سلول‌های  به  آن‌ها  تمایز  موجب 

عصبی شده است )72(. 
علاوه بر این، پیوند سلول‌های بنیادی فولیکول مو که ژن نستين29 
در  بیان می‌کنند  نیز  را  پیش ساز عصبی(  )شاخص سلول‌های 
مدل‌های جانوری آسیب عصب سیاتیک توانسته‌اند میزان ترمیم 
داد كه  احتمال  تقویت کند که مي‌توان  را  بازیابی عملکردی  و 
به سلول‌های  این سلول‌ها  تمایز  واسطۀ  به  اثرها  این  از  بخشی 
شوآن صورت گرفته است )74 ،73(. با این حال استخراج و تکثیر 
این سلول‌ها در محیط کشت نیازمند زمان طولانی است که خود 

محدودیتی در کاربرد کلینیکی این سلول‌ها است.
سلول‌های بنیادی مزانشیمی مغز استخوان

 30)BM-MSC( استخوان  مغز  مزانشیمی  بنیادی  سلول‌های 
نخستین جمعیت از سلول‌های بنیادی هستند که به طور وسیعی 
در کلینیک مورد استفاده قرار گرفتند )76 ،75(. این سلول‌ها به 
دلیل قابلیت تکثیر بالایی که دارند به سرعت در محیط کشت 
گسترش میی‌ابند. علاوه بر این، سلول‌های بنیادی مزانشیمی مغز 
استخوان به دلیل بیان محدود آنتی ژن 31MHC Class I و عدم 
بیان آنتی ژن MHC Class II واکنش ایمنی را تحریک نکرده و 
دچار رد پیوند نمی‌شوند و به همین دلیل گزینۀ مناسبی برای 

پیوند آلوژنیک هستند )78 ،77 ،16(. 

25 Induced pluripotent stem cells
26 Skin stem cells
27 Neuregulin
28 Hair stem cells

29 Nestin
30 Bone marrow mesenchymal stem cells
31 Major histocompatibility complex
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از دیگر مزایای این سلول‌ها می‌توان به توانایی ترشح فاکتورهای 
ممزوج  و  جراحت  محل  در  گزینی  لانه  قابلیت  نوروتروفیک، 
کم  و  اگزوژن  ژن‌های  پذیرش  امکان  میزبان،  بافت  با  شدن 
خطر بودن آن‌ها اشاره کرد )79(. سلول‌های بنیادی مزانشیمی 
در  و  داشته  را  عصبی  نشانگرهاي  بیان  قابلیت  استخوان  مغز 
شرایط مناسب امکان تمایز به سلول‌های عصبی مانند نورون‌ها، 
آستروسیت‌ها و سلول‌های شوآن را دارند )82-80 ،20(. پیوند 
این سلول‌ها به اعصاب آسیب دیده در مدل‌های جانوری سبب 
تقویت و تسریع روند ترمیم نورون‌های حسی و حرکتی و مهار 

آتروفی عضلانی می‌شود )83-85(.
تأثیر  مکانیسم‌های  شناخت  منظور  به  متعددی  پژوهش‌های 
محیطی  اعصاب  ترمیم  روند  بر  مزانشیمی  بنیادی  سلول‌های 
انجام گرفته است. چنین مکانیسم‌هایی ممکن است به وسیلۀ 
ترشح پاراکرین32 فاکتورهای رشد، تعدیل سیستم ایمنی، تمایز 
به سلول‌های شوآن، برهمکنش‌های سلولی و یا ترکیبی از این 

موارد عمل کنند )16(.
شواهد بسیاری موجود است که سلول‌های بنیادی مزانشیمی مغز 
استخوان از طریق ترشح فاکتورهای نوروتروفیک موجب تقویت 
روند ترمیم اعصاب محیطی می‌شوند )84(. به طور مثال بررسی 
بنیادی  سلول‌های  حاوی  کشت‌های  محیط  پروتئینی  محتوی 
مزانشیمی مغز استخوان نشان‌دهندۀ حضور عوامل نوروتروفیکی 
همچون 36BDNF ،35CNTF ،34NGF ،33bFGF و 37GDNF می 
های کشت شده  نورون  با  مذکور  محیط کشت  مجاورت  باشد. 
سبب تقویت رشد زوايد نورونی38 و قابلیت زنده ماندن نورون‌ها 
کنندۀ  خنثی  بادی  آنتی  افزودن  طرفی  از   .)86،  87( می‌گردد 
تحریکی آن  اثرات  مهار  یاد شده سبب  به محیط کشت   NGF

می‌گردد که گواهی بر یافتۀ ذکر شده است )84(.
و  رشد  تحریک  طریق  از  و  غیرمستقیم  طور  به  سلول‌ها  این   
اعصاب  ترمیم  روند  بر  می‌توانند  نیز  شوآن  سلول‌های  تکثیر 
محیطی تأثیر بگذارند )88 ،84(. برخی محققین نیز از طریق 
در  مربوطه  فاکتورهای  بیان  سبب  رشد  عوامل  ژن‌های  انتقال 
مقادیر فیزیولوژیک توسط این سلول‌ها شده‌اند )89(. با این حال 
کاربرد بالینی این روش به دلیل خطرهاي مربوط به تومورزایی 

تاکنون با چالش جدی مواجه بوده است.
بنیادی  سلول‌های  که  نیست  مکانیسمی  تنها  پاراکرین  اثرات 
تقویت  از طریق آن موجب  استخوان می‌توانند  مزانشیمی مغز 
و پیشبرد روند ترمیم اعصاب محیطی شوند. یکی از ویژگی‌های 
سبب  که  است  آن‌ها  بالای  پلاستیسیتی  سلول‌ها  این  مهم 
فنوتیپی  تغییرات  دچار  محیطی  شرایط  به  پاسخ  در  می‌شود 
زنده  موجود  بدن  در  و  کشت  محیط  در  سلول‌ها  این  گردند. 
قابلیت تمایز به سلول‌هایی با فنوتیپ سلول‌های شوآن را دارند 
)92-90(. پیوند این سلول‌های شوآن مانند به اعصاب محیطی 
آسیب دیدۀ موش‌های صحرایی موجب میلین سازي39 و تقویت 

روند ترمیم می گردد )92-94(.
درصد کمی از سلول‌های بنیادی مزانشیمی پیوند شده به اعصاب 
محیطی آسیب دیده، تحت تأثیر فاکتورهای رشد و سیتوکاین‌هایی 
که از بافت‌های آسیب دیده آزاد شده‌اند، به سلول‌هایی با فنوتیپ 
و شاخص‌های سلول‌های شوآن تمایز میی‌ابند )95 ،91(. از طرفی 
می‌توان به وسیلۀ محیط‌های کشت ویژۀ تمایز، سلول‌های بنیادی 
مزانشیمی مغز استخوان را به سلول‌های شوآن مانندی تمایز داد 
که تا حدودی قادر به میلینه کردن و حمایت از آکسون‌های در 

حال ترمیم هستند )96 ،93(.
مغز  مزانشیمی  بنیادی  سلول‌های  فوق،  ویژگی‌های  بر  علاوه 
استخوان توانایی منحصر به فردی در تعدیل سیستم ایمنی و 
کاهش التهاب بافتی از طریق برهمکنش‌های سلولی و آزادسازی 
فاکتورهای محلول دارند. این سلول‌ها با مهار تمایز مونوسیت‌ها 
به سلول‌های دندریتیک و سرکوب پیام رسانی التهابی، موجب 
مهار تکثیر و فعال شدن لنفوسیت‌های T می‌شوند )98 ،97(. 
همچنین این سلول‌ها قادر به مهار لنفوسیت‌های حساس شده 
عصبي40  برندۀ  تحليل  بیماری‌های  ايجاد  سبب  که  میلین  به 

همچون 41MS هستند، می‌باشند )99(. 
نورون‌هایی که آکسون‌هایشان دچار آسیب شده با ترشح نیتریک 
اکساید سبب تحریک سلول‌های شوآن برای ترشح اریتروپویتین 
)عامل محفاظت کنندۀ اعصاب( می‌شوند. گزارش‌هايي موجود 
است که سلول‌های بنیادی مزانشیمی نیز قادر به تولید نیتریک 
اکساید )100( و ترشح اریتروپویتین )101( می‌باشند و احتمال 
دارد بخشی از اثرات حفاظت کنندگي آن‌ها بر سیستم اعصاب 

محیطی نیز از این راه باشد. 
با  استخوان  مغز  مزانشیمی  بنیادی  سلول‌های  مجموع  در 
ویژگی‌هایی که دارند دورنمایی کارآمد و نوید بخش را در ترمیم 

اعصاب محیطی نشان می‌دهند. 
سلول‌های بنیادی بافت چربی42 

بنیادی  سلول‌های  از  غنی  و  دسترس  در  منبعی  چربی  بافت 
است. انسان مقادیر زیادی چربی زیر پوستی دارد که از طریق 
بنیادی  سلول‌های   .)102( است  برداشت  قابل  لیپوساکشن 
دست  به  انسان  بدن  سطح  چربی  بافت‌های  از  که  مزانشیمی 
سلول‌های  به  نسبت  بهتری  تکثیر  و  کشت  قابلیت  از  می‌آیند 
حاصل از لایه‌های چربی عمقی تر برخوردارند و تأثیر بهتری نیز 
نیز  بر روند ترمیم اعصاب محیطی دارند )103(. در جوندگان 
محل برداشت و سن سلول‌ها بر سرعت تکثیر، قدرت تمایز و 

قابلیت ترشحی آن‌ها مؤثر است )105 ،104(.
از  هتروژنی  جمعیت  و  چربي43  سلول‌هاي  حاوی  چربی  بافت 
با نام 44SVF است که حاوی سلول‌های  سلول‌های استرومایی 
سلول‌های  فیبروبلاست‌ها،  سلول‌های خونی،  عروقی،  اندوتلیال 
 .)106،  107( می‌باشد  بنیادی  سلول‌های  و  صاف  عضلانی 

32 Paracrine
33 Basic fibroblast growth factor
34 Nerve growth factor
35 Ciliary neurotrophic factor
36 Brain-derived neurotrophic factor
37 Glial cell-derived neurotrophic factor
38 Neurite

39 Myelination
40 Neurodegenerative
41 Multiple sclerosis
42 Adipose stem cells
43 Adipocyte
44 Stromal vascular fraction
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ریخت  نظر  از  چربی  بافت  مزانشیمی  بنیادی  سلول‌های 
شناسی45، بیان نشانگرهاي اختصاصی، رفتار سلولی در محیط 
با سلول‌های بنیادی  کشت و ویژگی‌‍‌‌های تمایزی تشابه زیادی 
سلول‌های  حال  این  با   .)106( دارند  استخوان  مغز  مزانشیمی 
تکثیر  قدرت  و  بالاتر  تراکم  از  چربی  بافت  مزانشیمی  بنیادی 
بیشتری در قیاس با سلول‌های بنیادی مزانشیمی مغز استخوان 
برخوردارند که سبب می‌شود برای گسترش در محیط کشت به 

تعداد سلول اولیه بسیار کمتری نیاز باشد )108 ،107(. 
ویژگی‌های مذکور موجب می‌شوند در هنگام بروز جراحت، بتوان 
با سرعت بیشتری به تعداد سلول‌های مورد نیاز برای پیوند دست 
یافت که اين مزیت بزرگی است. این سلول‌ها به دلیل عدم بیان 
آنتی ژن‌های MHC Class II امکان به کارگیری به صورت پیوند 
آلوژنیک بدون نیاز به داروهای سرکوب کنندۀ سیستم ایمنی بدن 
میزبان را دارند )107(. سلول‌های بنیادی مزانشیمی بافت چربی 
قادر به تمایز به ردۀ سلول‌های غیر مزانشیمی همچون نورون‌ها نیز 
هستند )108-106( و می‌توان آن‌ها را به وسیلۀ دستورالعمل‌های 
آزمایشگاهی ویژه به سلول‌هایی با فنوتیپ سلول‌های شوآن تمایز 
عوامل  ترشح  طریق  از  سلول‌ها  این   .)102،  109،  110( داد 
عواملی  و   46VEGF و   NGF، BDNF همچون  نوروتروفیکی 
همچون نوروگلین1 سبب تقویت رشد جوانه‌های عصبی و مهار 

مرگ نورونی می‌گردند )111-114 ،105(.
سلول‌های بنیادی مزانشیمی بافت چربی تمایز نیافته را می‌توان 
به صورت تزریق سیستمیک به محل جراحت عصبی پیوند نمود 
هستند  قادر  سلول‌ها  این  از  اندکی  تعداد  صورت  این  در  که 
فاکتورهای  ترشح  با  و  رسانده  عصبی  آسیب  محل  به  را  خود 
ترمیم ‌شوند  روند  بهبود  سبب  التهاب  کاهش  و  نوروتروفیک 
)115(. در روش دیگر، کاشت این سلول‌ها بر روی داربست‌های 
زیستی و پیوند این داربست‌ها به محل جراحت اعصاب محیطی 
نیز موجب بهبود شاخص‌های ترمیم و بهبود بازیابی عملکردی و 

حرکتی شده است )117 ،116 ،26(. 
پیوند،  از  پیش  که  هستند  تلاش  در  پژوهشگران  طرفی  از 
به  کشت  محیط  در  را  چربی  مزانشیمی  بنیادی  سلول‌های 
سلول‌های شوآن تمایز دهند. تاکنون چنین رویکردی منجر به 
بیان شاخص‌های سلول‌های شوآن  قابلیت  با  ایجاد سلول‌هایی 
ضمن  که  شده   S100 ژن  آنتی  و   47GFAP پروتئین  همچون 
می‌گردد  تومور  ایجاد  خطر  کاهش  سبب  ترمیم،  روند  تقویت 

.)102، 110، 118، 119(
به طور خلاصه عمده اثرات پیوند سلول‌های بنیادی مزانشیمی 
عوامل  ترشح  واسطۀ  به  نیافته  تمایز  حالت  در  چربی  بافت 
نوروتروفیک و تنظیم سیستم ایمنی بدن میزبان می‌باشد و در 
استفاده  مزیت  ندارند.  توجهی  قابل  تمایزی  قدرت  حالت  این 
به  نیاز  عدم  دلیل  به  که  است  این  نیافته  تمایز  سلول‌های  از 
تمایز، در محیط کشت سریع‌تر آمادۀ پیوند می‌شوند. در مقابل، 
سلول‌های بنیادی مزانشیمی چربی تمایز داده شده به سلول‌های 
شوآن مانند قادر هستند ضمن ترشح فاکتورهای نوروتروفیک، 
با جایگزین کردن سلول‌های شوآن از دست رفته سبب تقویت 

روند ترمیم و ميلين‌سازي آکسون‌های آسیب دیده شوند. با این 
حال شناخت بهتر مکانیسم‌های تمایز و تعیین دقیق تر فنوتیپ 
نهایی سلول‌های تمایز یافته نکات کلیدی هستند که باید پیش 

از کاربرد این سلول‌ها در کلینیک تعیین گردند. 
48Muse سلول‌های بنیادی

مزانشیمی  بنیادی  سلول‌های  قابلیت‌های  برخی  از  نظر  صرف‌ 
همچون توانایی ترشح عوامل نوروتروفیک، امکان استخراج آسان 
و کم خطر بودنشان، این سلول‌ها توانایی کمی در تمایز به ردۀ 
سلول‌های غیر مزانشیمی همچون نورون‌ها و سلول‌های شوآن 
دارند که موجب کاهش کارامدی آن‌ها در کلینیک می‌گردد. با 
این حال به تازگي گزارش گردیده است که سلول‌های بنیادی 
به  بنیادی  سلول‌های  از  کوچکی  جمعیت  حاوی  مزانشیمی 
به  تمایز  قابلیت  بودن  دارا  با  Muse هستند که  نام سلول‌های 
بافت‌های  ترمیم  روند  بر  اثرات مثبتی  رده‌های مختلف سلولی 
آسیب دیده دارند و از این رو می‌توانند تحول مهمی در پزشکی 
 ،Muse ترمیم و سلول درمانی ایجاد نمایند )120(. سلول‌های
سلول‌هایی پرتوانی هستند که در حدود یک درصد از جمعیت 
سلول‌های بنیادی مزانشیمی را تشکیل می‌دهند و نخستین بار 
در سال 2010 شناسایی شدند )121(. این سلول‌ها در بافت‌های 
مزانشیمی بالغی نظیر مغز استخوان و چربی وجود داشته )122( 
و در عین حال به آسانی از ردۀ سلولی مزانشیمی مغز استخوان، 
بافت چربی و فیبروبلاست‌ها که به طور تجاری در دسترس‌اند 

نیز قابل استخراج هستند )124 ،123 ،121(.
با توجه به فعالیت تلومرازی پایین و عدم تومورزایی انتظار می‌رود 
که این سلول‌ها بتوانند به سرعت در پزشکی ترمیمی به کار گرفته 
شوند )121 ،120(. برخلاف سایر سلول‌های بنیادی مزانشیمی 
که به طور عمده دارای اثرات تروفیک و تعدیل کننده سیستم 
تمایز  بارزی در  توانایی  ایمنی هستند، سلول‌های Muse دارای 
به هر سه ردۀ سلولی اکتودرمی، مزودرمی و اندودرمی می‌باشند 
)125 ،121(. این سلول‌ها مقاومت زیادی به شرایط پر استرس 
دارند )121( و به طور طبیعی قادر هستند از طریق جریان خون 
محیطی به بافت‌های آسیب دیده مهاجرت کرده و از طریق تمایز 
به سلول‌های بافت هدف دامنۀ اثرات ترمیمی خود را گسترش 
جمعیت  در  سلول‌ها  این  درصد  چه  اگر   .)120،  121( دهند 
سلول‌های مزانشیمی ناچیز می‌باشد، ولیکن با توجه به سرعت 
تکثیر زیاد این سلول‌ها در محیط کشت می‌توان در مدت زمان 

کوتاهی به تعداد زیادی از این سلول‌ها دست یافت )124(.
ماهیتی  دارای  آنتی‌ژنیک  شاخص‌های  نظر  از  سلول‌ها  این 
سلول‌های  شاخص‌های  بیان  بر  علاوه  طوری‌که  به  دوگانه‌اند 
بنیادی مزانشیمی )CD105، CD90 و CD29(، شاخص‌های خاص 
سلول‌‌های پرتوان همچون SSEA-3 را نیز بیان می‌کنند )121(. 
 ،iPSCs و  رویانی  بنیادی  با سلول‌های  مقایسه  در  این حال،  با 
سلول‌های Muse ژن‌های مرتبط با پرتوانی )Nanog، Oct3/4 و 
Sox2( را به میزان کمتری بیان کرده و فعالیت تلومرازی و میزان 
بیان ژن‌های مرتبط با چرخۀ سلولی نیز در این سلول‌ها در سطح 

پایین تری انجام می‌شود )122(. 

45 Morphology
46 Vascular endothelial growth factor

47 Glial fibrillary acidic protein
48 Multilineage-differentiating stress enduring cells
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این سلول‌ها در محیط کشت نیز رفتار دوگانه‌ای دارند به طوری‌که 
هم به شكل چسبیده به کف فلاسک )مانند فیبروبلاست‌ها( و هم 
در حالت سوسپانسیون و معلق )نظیر سلول‌های بنیادی جنینی( 
قابل کشت هستند. سلول‌های Muse در حالت سوسپانسیون از نظر 
ظاهری و بیان شاخص‌های ویژه همانند سلول‌های بنیادی رویانی 
هستند و پس از انتقال به محیط کشت ژلاتینی قادر هستند به طور 
خودبخودی به میزان 10 تا 15 درصد به ردۀ سلول‌های مزودرمی، 
3 تا 4 درصد به ردۀ سلول‌های اکتودرمی و 3 تا 4 درصد نیز به ردۀ 

سلول‌های اندودرمی تمایز یابند )126 ،121 ،118(. 
را بدون هیچ گونه  این سلول‌ها  این است که می‌توان  نکتۀ مهم 
دستکاری ژنتیکی و تنها از طریق القاء کننده‌های مناسب به سلول‌های 
دلخواه متمایز نمود که نسبت به روش‌های دستکاری ژنتیکی برای 
ایجاد تمایز خطر کمتری دارد )120(. گزارش شده که این سلول‌ها 
 BDNF 49 وB-27 ،bFGF در محیط کشت پایۀ ویژۀ نورون‌ها که با
تقویت شده است به سلول‌هایی با فنوتیپ نورون که 50MAP-2 و 

نوروفیلامان‌ها را بیان می‌کنند، تمایز یافته‌اند )122(.
سلول‌های Muse مشتق شده از مغز استخوان در مقایسه با بافت 
چربی و پوست از قابلیت پرتوانی بیشتری برخوردارند و افزون 
بر قابلیت بیشتر در تحمل استرس‌های محیطی، ژن‌های مرتبط 
بیشتری  میزان  به  را  اندودرمی  و  اکتودرمی  سلول‌های  ردۀ  با 
سلول‌های  که  است  ذکر  قابل   .)120،  125( می‌کنند  بیان 
به  که  فیبروبلاست‌هایی  یا  و  استخوان  مغز  مزانشیمی  بنیادی 
طور تجاری در دسترس هستند بسته به شرایط کشت می‌توانند 

حاوی 1 تا 6 درصد از سلول‌های Muse باشند )122(. 
بودن  دارا  Muse ضمن  بنیادی  سلول‌های  که  این  به  توجه  با 
از  عادی  مزانشیمی  بنیادی  سلول‌های  مثبت  ویژگی‌های 
استرس  پر  شرایط  برابر  در  زیاد  مقاومت  و  بالا  تمایزی  توان 
به  جهت  زیادی  پتانسیل  که  می‌رسد  نظر  به  برخوردارند،  نیز 
باشند.  داشته  بافت  مهندسی  و  ترمیمی  پزشکی  در  کارگیری 
شناخت  زمینۀ  در  بیشتر  تحقیقات  با  که  است  نياز  رو  این  از 
سلول‌ها  این  استخراج  روش‌های  سازی  بهینه  و  خصوصیت‌ها 

امکان استفاده کلینیکی از آن‌ها مورد بررسی قرار گیرد.
نتیجه گیری

از  استفاده  زمینۀ  در  که  چشمگیری  پیشرفت‌های  علیرغم 
به  بافت  مهندسی  و  ترمیمی  پزشکی  در  بنیادی  سلول‌های 

دست آمده است، همچنان تا استفادۀ فراگیر از این سلول‌ها در 
کلینیک مسیر طولانی در پیش است. به طور خلاصه اثرات مثبت 
سلول‌های بنیادی بر روند ترمیم اعصاب محیطی شامل توانایی 
آن‌ها در ترشح انواع فاکتورهای رشد، تعدیل پاسخ سیستم ایمنی 
بدن، تمایز به سلول‌های شوآن مانند و کمک به میلینه کردن 

آکسون‌های در حال ترمیم است. 
در این بین سلول‌های بنیادی بافت چربی به دلیل امکان استخراج 
آسان از فرد بیمار، قابلیت گسترش و تکثیر مناسب در محیط 
کشت و اثرات مثبتی که بر روند ترمیم جراحت‌هاي سیستم عصبی 
داشته‌اند، مورد توجه بیشتری قرار دارند. سایر منابع سلولی ذکر 
شده نیز پتانسیل لازم جهت به کارگیری در روند ترمیم اعصاب 
محیطی را نشان داده‌اند اما به دلایلی همچون گسترش ضعیف در 
محیط کشت و یا عدم امکان تهیۀ آن‌ها به صورت اتولوگ )از خود 

فرد بیمار( درحال حاضر  قابلیت کاربرد بالینی ندارند.
در این میان برخی محققین معتقدند که تمایز دادن سلول‌های 
بنیادی در محیط کشت سبب بهبود قابلیت زنده ماندن آن‌ها، 
کردن  میلینه  توانایی  و  نوروتروفیک  فاکتورهای  ترشح  تقویت 
آکسون‌ها پس از پیوند به محل جراحت اعصاب محیطی می‌شود 
و  مخالفند  نظر  این  با  عده‌ای  مقابل  سمت  در   .)127،  128(
چنین ابراز می‌دارند که پیوند سلول‌های تمایز نیافته علاوه بر 
صرفه جویی در وقت که عاملی کلیدی در کلینیک است، سبب 
محل  در  گزینی  لانه  و  مهاجرت  از  پس  سلول‌ها  این  می‌شود 
جراحت عصبی در پاسخ به پيام‌های موضعی وارد روند تمایزی 
پایدارتری می‌شوند در حالی‌که سلول‌های متمایز شده  بهتر و 
در محیط کشت توان پاسخ دهی به این علایم موضعی بافتی را 

ندارند )130 ،129(. 
یک  از  استفاده  که  می‌دهند  نشان  تحقیقاتی  شواهد  از طرفی 
محیطی  اعصاب  جراحت‌هاي  ترمیم  منظور  به  درمانی  روش 
نتیجۀ مطلوبی نخواهد داشت. از این رو بجاست که از سلول‌های 
از  استفاده  همچون  درمانی  روش‌های  دیگر  همراه  به  بنیادی 
داربست‌های زیستی و یا تیمار با فاکتورهای رشد استفاده شود. 
زمینۀ  در  بیشتر  پژوهش‌های  انجام  با  تا  است  نیاز  رو  این  از 
همچنین  و  محیطی  اعصاب  ترمیم  فرایند  تر  دقیق  شناخت 
مکانیسم‌های شکل دهندۀ رفتارهای سلول‌های بنیادی از قبیل 
مهاجرت، لانه گزینی، تکثیر و تمایز بتوان این سلول‌ها را به نحو 

مطلوب و گسترده‌ای در کلینیک مورد استفاده قرار داد. 

49 B-27 serum-free supplement
50 Microtubule-associated protein 2
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