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Introduction: There is an increasing prevalence of Alzheimer’s disease (AD). Amyloid-

beta deposition and neurotoxicity play an effective role in AD. Oxidative stress is thought to 

be central in the pathogenesis that leads to production of reactive oxygen species and causing 

damages of the macromolecules in target cells. It has been reported that the nuclear factor 

erythroid 2 related factor 2 (Nrf2) is a key regulator of endogenous inducible defense systems 

in the body and increase the level of many antioxidants, including glutathione-s-transferase. 

Under oxidative damage conditions, Nrf2 translocates to the nucleus, binds to the antioxidant 

response element (ARE), and enhances sequence to initiate transcription of cytoprotective genes. 

This review focuses on cellular mechanisms of Nrf2 regulation and discusses the relationship 

between Nrf2 regulation and AD. Conclusion: In general, we suggest that Nrf2-ARE activation 

is a novel neuroprotective pathway that can be consider as a promising therapeutic strategy for the 

treatment of neurodegenerative disorders, such as AD. 
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ه چــــــــكيد

كليد واژه‌ها:
1. بيماري آلزايمر 

2. پپتيدهاي آمیلوئید بتا 
3. استرس اكسيداتيو 

4. گونه‏های اکسیژن فعال

بتا و سمیت عصبی يك  آلزایمر وجود دارد. رسوب آمیلوئید  بیماری  از  افزونی  يك شیوع روز  مقدمه: 
ایفاء می‌کنند. تصور می‌شود که استرس اکسیداتیو نقش اصلی را در  آلزایمر  نقش مؤثری را در بیماری 
در  ماکرومولکول‌ها  به  آسیب‌هايي  ايجاد  و  فعال  اکسیژن  گونه‏های  تولید  به  منجر  كه  دارد  بیماریی‏زایی 
سلول‏های هدف می‌شود. گزارش شده است که فاکتور هسته‌ای اریتروئید2 مرتبط با فاکتور Nrf2( 2( يك 
تنظیم کنندۀ كليدي سیستم‌هاي دفاعی قابل القاي داخلي در بدن است و سطح بسياري از آنتی اکسیدان‏ها 
مانند گلوتاتیون S-ترانسفراز را افزایش می‌دهد. در شرایط آسيب اكسيداتيو، Nrf2 به هسته منتقل مي‌شود 
و به عنصر پاسخ آنتی اکسیدان )ARE( متصل می‌شود و توالي را براي آغاز رونویسی از ژن‏های حفاظت 
كنندة سلول افزايش مي‌دهد. این مطالعة مروري بر مکانیسم‌هاي سلولی تنظيم Nrf2 تمرکز ميك‌ند و در 
مورد ارتباط بين تنظيم Nrf2 و بیماری آلزایمر بحث می‎نماید. نتيجه گيري: به طور کلی ما پیشنهاد 
ميك‌نيم كه فعال‌سازي Nrf2-ARE یک مسیر محافظتك‌نندة نوروني جديد است كه می‌تواند به عنوان 
یک استراتژی درمانی امید بخشی برای درمان اختلالات تحلیل برندۀ عصبي مانند بيماري آلزایمر در نظر 

گرفته شود. 
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مقدمه
رادیکال‌های  قبیل  از   1)ROS( فعال  اکسیژن  گونه‌های 
هیدروکسیل  و   )H2O2( هیدروژن  پراکسید   ،)O2

-( سوپراکسید 
تولید می‌شوند.  ارگانیسم‌های هوازی  به طور مداوم در   )OH-(
با  تعادل  در   ROS شکل‌گیری  سطح  فیزیولوژیکی  شرایط  در 
ظرفیت آنتی اکسیدان سلول می‌باشد )1(. در صورتی که سلول 
 UV ،به مدت طولانی در معرض استرس‌های محیطی مثل گرما
و غیره قرار بگیرد و یا در فعالیت سیستم دفاعی آنتی اکسیدان 
و سطح  می‌خورد  هم  به  تعادل  این  شود،  ایجاد  اختلالی  بدن 
شکل‌گیری ROS بیشتر از ظرفیت آنتی اکسیدان بدن خواهد 
بود )2(. نتیجۀ چنین حالتی ایجاد استرس اکسیداتیو و به دنبال 
بود  خواهد   DNA و  لیپید‌ها  پروتئین‌ها،  اکسیداتیو  آسیب  آن 
زیاد  مصرف  علت  به   2)CNS( مرکزی  عصبی  ،3(. سیستم   4(
اکسیژن و دارا بودن مقادیر بالای اسیدهای چرب غیراشباع به 

استرس اکسیداتیو حساس می‌باشد. 
بیماری‌های  از  بسیاری  پاتوژنز  در  اکسیداتیو  آسیب  و  استرس 
تخریب نورونی شامل بیماری آلزایمر )AD(3، پارکینسون )PD(4 و 
 6Nrf2-7ARE (5 شرکت می‌کنند )7-5(. مسیرHD( هانتینگتون
یک شاخص و تنظیم کنندۀ اصلی استرس اکسیداتیو می‌باشد که 
توانایی تعدیل بیان صدها ژن آنتی اکسیدان و سم زدایی را دارد 
)10-8(. این مسیر در تنظیم حالت ردوکس8 سلولی نقش کلیدی 
را بازي ميك‌ند )1(. تحت شرایط هومئوستاتکی طبيعي، فاکتور 
مهار می‌شود   Keap1 به وسیلۀ  در سیتوپلاسم   Nrf2 رونویسی 
)11 ،7( كه به محض مواجهه با ROS، فاکتور Nrf2 از مهارکنندۀ 
آنجا  در  و  می‌شود  منتقل  هسته  درون  به  و  Keap1 جدا شده 
آنتی  آنزیم‌های  کدکنندۀ  ژن‌های  پروموتور  ناحۀی  در   ARE به 
اکسیدان متصل می‌شود و تولید آنزیم‌های آنتی اکسیدان درونی 
را القاء می‌کند )13-11(. این آنزیم‌ها شامل سوپراکسید دسموتاز 
در  که  باشند  می  غیره  و  ردوکسین  پراکسی  کاتالاز،   ،9)SOD(

مقابله با ROS نقش مهمی را ایفاء می‌کنند )14 ،4(.
تخریب  بیماری‌های  در   Nrf2-ARE مسیر  دینامکی  تغییرات 
نشان  کننده‌ای  قانع  شواهد   .)15( است  شده  گزارش  نورونی 
از قبیل ترت   Nrf2-ARE فعال کننده‌های مسیر  می‌دهند که 
و   11)SFN( سولفوروفان   ،10)TBHQ(هیدروکوینون بوتیل 
در  را  اکسیداتیو  استرس  قادرند   12)DMF( فومارات  متیل  دی 
از  مختلف  نورونی  تخریب  بیماری‌های  آزمایشگاهی  مدل‌های 
را  نورونی  اثرات محافظت  و  HD مهار کنند  AD،م PD و  قبیل 
در مقابل پاتولوژی این بیماری‌ها ارائه دهند )18-16(. در این 
مطالعه ابتدا به بررسی استرس اکسیداتیو و ارتباط آن با بیماری 
Nrf2- آلزایمر می‌پردازیم و سپس به تغییرات مسیر محافظتی

ARE در بیماری آلزایمر خواهیم پرداخت. 

گونه‌های اکسیژن فعال و استرس اکسیداتیو
صورت  به  که  می‌باشند  کوچکی  زیستی  مولکول‌های   ROS
هوازی  ارگانیسم‌های  در  اکسیژن  متابولیسم  طبیعی  محصول 
تولید می‌شوند. ROS نقش فیزیولوژیکی مهمی را در مسيرهاي 
ایفاء می‌کند )19(، اگرچه مواجهۀ طولانی  پيام‌ رساني سلولی 
مدت سلول‌ها با سطوح بالای ROS منجر به نکروز یا آپوپتوز 
درون   ROS تولید  در  آنزیمی  سیستم  چندین  می‌شود. 
 ،)20( اکسیداز13   NADPH كه شامل  سلولی شرکت می‌کنند 
گزانتین  و   )11(  P450 سیتوکروم  به  وابسته  اکسیژنازهای 
اکسیداز14 )21( مي‌باشند. تولید غیر آنزیمی ROS، در کمپلکس
Ι  و ΙΙΙ زنجیرۀ انتقال الکترون میتوکندری رخ می‌دهد )22(. 

اکسیژن  از  الکترون  یک  کاهش  وسیلۀ  به  سوپراکسید  آنیون 
تولید می‌شود و پیش ساز بسیاری از ‌ROS ها است )23(. آنیون 
سوپراکسید می‌تواند با نیتریک اکسید واکنش داده و پراکسی 
توسط  سوپراکسید  آنیون   .)24( دهد  شکل  را  سمی  نیتریک 
به اکسیژن و پراکسید هیدروژن تبدیل  سوپراکسید دیسموتاز 
غشاهای  میان  از  می‌تواند  هیدروژن  پراکسید   .)23( می‌شود 
زیستی انتشار یافته و سبب آسیب جدی به ماکرومولکول‌های 
فلزاتی مثل  ضروری سلول شود. پراکسید هیدروژن در حضور 
می‌شود  تبدیل  فعال  بسیار  هیدروکسیل  رادیکال‌های  به  آهن 
به طور معمول گلوتاتیون  اکسید کننده‌ای قوی می‌باشند.  که 
پراکسیداز، کاتالاز و پراکسی ردوکسین‌ها، پراکسید هیدروژن را 

به آب کاهش می‌دهند )1(. 
استرس اکسیداتیو نتیجۀ عدم تعادل بین شکل‌گیری ROS و 
سیستم دفاع آنتی اکسیدان می‌باشد. اختلال در تعادل ردوکس 
سلولی به دلیل افزایش تولید ROS و یا اختلال در دفاع آنتی 
ماکرومولکول‌های  اکسیداتیو  تغییرات  به  نهایت  در  اکسیدان، 
می‌شود.  منجر   DNA و  پروتئین‌ها  لیپیدها،  شامل  زیستی 
اکسیداتیو  آسیب  شناسایی  جهت  مختلف  زیستی  مارکرهای 
مورد استفاده قرار می‌گیرند )25(. از آنجايی که همۀ غشاهای 
عوامل  توسط  بنابراین  می‌باشند،  لیپید  لایه  دو  دارای  سلولی 
اکسید کننده تحت تأثیر قرار گرفته و اکسیداسیون رخ می‌دهد. 
كرده  اكسيد  را  ليپيدها  نموده،  حمله  سلول  غشای  به   ROS
پراکسیدها،  هیدروکسی  لیپید   ،15)MDA( آلدئید  مالوندی  و 
ایزوپروستان‌ها و تیوباربیتوریک اسید باز فعال )TBARS(16 را 
ايجاد مي‌نمايد )MDA .)26، یك آلدئيد فعال است كه ميزان 
اثر  در   TBARS ميي‌ابد.  افزايش  اكسيداتيو  استرس  در  آن 
 ROS همچنین   .)27( مي‌شود  ايجاد  ليپيدها  پراكسيداسيون 
باعث شکل گیری کربونیل‌های  و  پروتئین‌ها حمله می‌کند  به 
پروتئین شده و سبب از بین رفتن عملکرد آن‌ها می‌شود )28(. 

گوانین، باز مستعد در برابر استرس اکسیداتیو می‌باشد. 

1 Reactive oxygen species (ROS)
2 Central nervous system (CNS)
3 Alzheimer’s disease (AD)
4 Parkinson’s disease (PD)
5 Huntington disease (HD)
6 Nuclear factor erythroid 2-related factor 2 (Nrf2)
7 Antioxidant response element (ARE)
8 Reduction and oxidation (Redox)

9 Superoxide dismutase (SOD)
10 Tert-butylhydroquinone (TBHQ)
11 Sulforaphane (SFN)
12 Dimethyl Fumarate (DMF)
13 NADPH oxidase
14 Xanthine oxidase
15 Malondialdehyde (MDA)
16 Thiobarbituric acid reactive substances (TBARS)
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میزان بیان 8 -هيدروکسي داکسي گوانوزين )OHdG-8(17 در مغز 
می‌تواند برای اندازه گیری آسیب اکسیداتیو اسیدهای نوکلئکی 
استفاده شود )2(. سنجش میزان OHdG-8 در مغز بیماران نشان 
می‌دهد که استرس اکسیداتیو در نوکلئوتیدها منجر به تغییرات 
در بازهای پورین و پریمیدین می‌شود. DNA ي میتوکندری به 
استرس القاء شده توسط ROS بسیار حساس است زيرا در نزدیکی 
جایگاه تولید ROS قرار گرفته است و حذف‌هایی در DNA، منجر 

به عدم عملکرد میتوکندری می‌شود )30 ،29(.
استرس  برابر  در   Nrf2-ARE مسیر  محافظتی  نقش 

اکسیداتیو
به منظور حفظ تعادل ردوکس، سلول‌ها با تنوعی از آنزیم‌های 
محافظ  آنزیم‌های  این  تولید  شده‌اند.  مجهز  اکسیدان  آنتی 
سلولی به محض مواجهه با ROS از طریق یک مکانیسم تنظیم 
شده در سطح رونویسی القاء می‌شوند )31(. ژن‌های کدکنندۀ 
پروتئین‌های دخیل در سم زدایی ROS، در ناحۀی پروموتور خود 
توسط  ژن‌ها  این  ميك‌نند.  رقابت   Nrf2 با   ARE توالی  سر  بر 
فاکتور رونویسی Nrf2 فعال می‌شوند، Nrf2 به محض مواجهه با 
الکتروفیل‌ها یا ROS به درون هسته منتقل می‌شود و رونویسی 

از ژن آنزیم آنتی اکسیدان را فعال می‌کند )32-34 ،11(.
Nrf2-ARE الف. تنظیم مسیر

زیپ  پروتئيني  خانوادۀ  به  متعلق  رونويسي  فاكتور  يك   Nrf2
لوسینی بازی )bZip(18 است و توسط ژن NFE2L2 کد می‌شود. 
در  آن  بیان  بیشترین  اما  می‌شود  بیان  بافت‌ها  همۀ  در   Nrf2
دارای   Nrf2 می‌باشد.  کبد  و  قلب  شش،  ماهیچه،  کلیه،  مغز، 
شش ناحۀی بسیار حفاظت شده به نام دومین‌های 19Neh است. 
پروتئین‌های  با  اجازۀ هترودایمر شدن   Nrf2 به   Neh1 دومین 
به   Nrf2 اتصال  به   Neh2 دومین  می‌دهد.  را   MAF کوچک 

پروتئین سرکوبگر Keap1 کمک می‌کند. 

Neh3 احتمالاً نقشی را در پایداری پروتئین Nrf2 بازی می‌کند 
رونویسی  کنندۀ  فعال  دومین  عنوان یک  به  که  است  ممکن  و 
فعالیت کند، دومین‌های Neh4 و Neh5 به پروتئین اتصال یابنده 
به عنصر پاسخ cAMPم )CRE(20 متصل می‌شود و رونویسی از 
ژن‌های هدف Nrf2 را فعال می‌کند. ناحۀی Neh6 موجب دژنره 
شدن این فاکتور می‌شود )36 ،35(. تحت شرایط هومئوستاتکی 
و بدون استرس، Nrf2 در داخل سیتوپلاسم به پروتئین سرکوبگر 
Keap1 متصل است و موجب تخریب پروتئوزومی آن می‌شود كه 

به این طریق فعالیت و انتقال آن به هسته مهار می‌گردد )37(.
هنگامی که سلول‌ها در معرض استرس اکسیداتیو و مقادیر زیاد  
ROS قرار می‌گیرند، اکسیداسیون بقایای سیستئین کلیدی در 
پروتئین Keap1 افزایش می‌یابد كه این تغییرات ساختمانی توانایی 
اتصال Keap1 را به Nrf2 ضعیف می‌کند )39 ،38(. سرانجام برهم 
کنش بین Keap1 و Nrf2 از هم گسسته مي‌شود و منجر به تخریب 
پروتئوزومی کاهش یافته Nrf2، تجمع فاکتور رونویسی Nrf2 در 
  Nrf2 سیتوپلاسم و انتقال آن به داخل هسته می‌گردد. بعد از اینکه
به داخل هسته منتقل شد با پروتئین‌های کوچک MAF تشکیل 
پروموتور ژن‌های هدف  توالی ARE در  به  و  هترودایمر می‌دهد 

متصل می‌شود و رونویسی از آن‌ها را فعال می‌کند )40(‌. 
مقابله  اکسیداتیو  محصولات  با  سلول  که  شرایط  این  در 
می‌کند، یک لوپ فیدبک منفی جهت خاموشی این مسیر برای 
جلوگیری از فعالیت زیاد آن در سلول آغاز می‌شود )تصوير 1(. 
 Cul3 م،Keap1 در ناحۀی پروموتور ژن‌های ARE در واقع توالی
Rbx1- بیان کمپلکس   Nrf2 فعالیت  و  دارد  قرار  نیز   Rbx1 و 

در جداسازی  این کمپلکس  افزایش می‌دهد.  را   Cul3-Keap1
Nrf2 از هسته، انتقال آن به داخل سیتوپلاسم و تخریب سریع 
شرایط  به  سلول  طریق  این  به  و   )41-43( می‌کند  عمل  آن 

هومئوستاتکی بر می‌گردد.

تصويــر 1- مســیر حفاظتــی Nrf2-ARE: هنگامــی کــه ســلول‌ها در معــرض اســترس اکســیداتیو و مقادیــر زیــاد   
ROS قــرار می‌گیرنــد، توانایــی اتصــال Keap1 را بــه Nrf2 ضعیــف می‌کنــد. برهــم کنــش بیــن Keap1 و Nrf2 از هــم 
پاشــیده و منجــر بــه تجمــع فاکتــور رونویســی Nrf2 در سیتوپلاســم و انتقــال آن بــه داخــل هســته می‌شــود. بعــد 
از اینکــه Nrf2 بــه داخــل هســته منتقــل شــد بــا پروتئین‌هــای کوچــک MAF تشــکیل هترودایمــر می‌دهــد و بــه 

توالــی ARE در پروموتــور ژن‌هــای هــدف متصــل می‌شــود و رونویســی از آن‌هــا را فعــال می‌کنــد.

17 8-hydroxy-2′-deoxyguanosine (8-OHdG)
18 Basic-Leucine zipper protein (bZip)

19 NRF2-ECH homology (Neh)
20 cAMP response element (CRE)
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Nrf2-ARE ب. هدف‌های پایین دست مسیر
ژن‌های کدکنندۀ آنزیم‌های آنتی اکسیدان که هدف‌های پایین 

دست این مسیر می‌باشند شامل موارد زیر هستند:
شناخته شده  آن  از  فرم  سه  انسان  در  که   SOD آنزیم   )1
که   SOD2 می‌شود،  یافت  درسیتوپلاسم  که   SOD1 است: 
خارج  فضای  در  که   SOD3 و  دارد  حضور  میتوکندری  در 
و  مس  حاوی   SOD3 و   SOD1 فعال  مرکز  است.  سلولی 
اولین خط   SOD آنزیم  است.  منگنز  حاوی   SOD2 و  روی 
دفاعی در برابر استرس اکسیداتیو می‌باشد و دیسموتاسیون 
آنیون سوپراکسید را به مولکول اکسیژن و پراکسید هیدروژن 

کاتالیز می‌کند )1(. 
2( آنزیم کاتالاز یکی از آنزیم‌های آنتی اکسیدان مهم داخل 
سلولی است که در تجزیۀ پراکسید هیدروژن به آب و اکسیژن 

عمل می‌کند )44(.
3( آنزیم پراکسی ردوکسین )Prx(21 که در تخریب هیدروژن 

پراکسید و پراکسی نیتریت نقش دارد )44(.
کنندۀ  محدود  مرحلۀ  که   )HO-1( اکسیژناز  هم  آنزیم   )4
سرعت از کاتابولیسم هم را کاتالیز می‌کند و در شکستن هم 
بیلی‌وردین22 نقش دارد )45(.  و  به آهن، مونواکسید کربن 
هم اکسیژناز-1 در پاسخ به استرس مانند استرس اکسیداتیو، 
القاء  غیره  و  سیتوکین‌ها  سنگین،  فلزات  تأثير  هیپوکسی، 
در  دخیل  مهم  فاکتور  یک  عنوان  به  تازگي  به  و  می‌شود. 
مسیرهای آنتی اکسیدانی، ضد التهابی و ضد آپوپتوز مطرح 

شده است )47 ،46(. 
  23)NQO1( ردوکتاز  اکسیدو  کینون   NADPH آنزیم   )5
موجب کاهش کینون به هیدروکینون می‌شود و به این طریق 
کینون  مشتقات  از  ناشی  آزاد  رادیکال‌های  گیری  شکل  از 

جلوگیری می‌کند )45(.
6( سیستم گلوتاتیون )GSH(24 یکی از مهم ترین سیستم‌های 
است. بدن  در  بافت‌ها  انواع  از  بسیاری  برای  اکسیدان  آنتی 

GSH  می‌تواند انواع گونه‌های اکسیداتیو از قبیل سوپراکسید، 
رادیکال هیدروکسیل و پراکسی نیتریت را حذف کند )48(.

نقش استرس اکسیداتیو در پاتوژنز بیماری آلزایمر
بیماری آلزایمر )AD( یک بیماری تخریب نورونی است که به 
وسیلۀ فقدان حافظه و ادراک تشخیص داده می‌شود و این زوال 
حافظه در عملکرد روزانه و زندگی فرد دخیل می‌باشد. امروزه 
این بیماری در كشورهاي صنعتي با یک سرعت هشدار دهنده 
در حال افزایش است )49(. به نظر می‌رسد عامل اصلی کاهش 

شناختی و از دست دادن حافظۀ کوتاه مدت در بیماری آلزایمر، 
تخریب نورون‌های کولینرژیک در هیپوکامپ و قشر باشد. مغز 

بیماران AD دچار کمبود استیل کولین است )50(.
 استیل کولین یک ناقل عصبي25 مهم است که موجب تسهیل 
در یادگیری می‌شود )51(. تشکیل پلاک‌های آمیلوئیدی خارج 
در   26)Aβ( بتا  آمیلوئیدی  پروتئین  رسوب  از  متشکل  سلولی 
متشکل  نورونی  داخل  تنیدۀ  هم  در  رشته‌های  و  سلول  خارج 
تائو27  میکروتوبولی  پروتئین  فسفریلۀ  فرم  حاوی  رشته‌های  از 
دو  هر  در   .)52( می‌باشند  بیماری  این  اصلی  شاخصه‌های  از 
تاخوردگی  با  پروتئین‌ها  تجمع  شامل  رسوب‌ها  بيماري،  شکل 
اشتباه28 می‌باشند. این رسوب‌ها در مغز افراد طبيعي نیز در ابعاد 
بسیار کم دیده شده‌اند. پردازش تغییر یافتۀ پروتئین آمیلوئید از 
پیش سازش 29APP عامل اصلی بيماريزايي AD در نظر گرفته 

می‌شود )53(. 
APP یک پروتئین عرض غشایی با عملکرد ناشناخته است که در 
انواع سلول‌ها مانند نورون‌ها وجود دارد )54( و به پروتئین‌های 
  APP .)55( متصل می‌شود APL2 30 وAPL1 مانند APP شبه
پروتئولیز  β-سکرتاز32  و  γ-سکرتاز31  آنزیم‌های  توسط  می‌تواند 
آمینه  اسید   43 تا   38 با  پپتید‌هایی  تولید  به  منجر  که  شود 
عنوان  به  آمیلوئیدی  پلاک‌های  این  ساز(.  )آمیلوئید  می‏گردد 
β-سکرتاز پیشرفت  ابتدا  آلزایمر می‌باشند. در  بیماری  شاخصۀ 
این پپتیدهای سمی را مهار می‌نماید و منجر به شکستن توالی 
فعالیت   .)56، ساز(-)57  آمیلوئید  غیر  )مسیر  می‌شود   Aβ
پروتئین  این  فضایی  شکل  تغییر  به  وابسته   Aβ بیولوژیکی 
 α دارای شکل فضایی مارپیچ یا Aβ1-42 می‌باشد. مونومر‌های

-هلیکس33 می‌باشند و رشد نورونی را تحریک می‌کنند )58(.
تجمع  به  منجر  بتا34  فضایی صفحۀ  به شکل  این حالت  تغییر 
می‌نماید  سلول  در  سمیت  حالت  ایجاد  و  می‌شود  فیبریل‌ها 
)59( در بررسی‌های ژنتیکی انواع خاص و نادر بیماری آلزایمر، 
جهش ژن APP و سایر ژن‌های کنترل کنندۀ پردازش آمیلوئید 
موتان‌های  بر روي  بررسي‌هايي كه   .)60، گزارش شده‌اند )61 
 35)PS1( 1 صورت گرفته‌اند، نشان مي‌دهند که پرسنیلین APP
و پرسنیلین PS2( 2( به عنوان یک عامل مهم در تعداد كمي از 
بيماران AD مي‌باشند اما برای بيشتر نمونه‌های AD، فاکتورهای 

ایجاد کننده ناشناخته است )63 ،62(. 
علاوه بر تجمع و رسوب پپتید Aβ در پلاک‌های نورونی و هایپر 
فسفریله شدن پروتئین تائو، فاکتورهای پاتوفیزیولوژیکی دیگری 
سیکل  اختلال  التهاب،  میتوکندری،  عملکردی  اختلال  مانند 
در  هم  اکسیداتیو  تخریب  و  سلولی  انتقال  در  اختلال  سلولی، 

شروع و پیشرفت بیماری مؤثرند )64-66(. 

21 Peroxy redoxine (Prx)
22 Biliverdin
23 NADPH: Quinone Oxidoreductase 1 (NQO1)
24 Glutathione
25 Neurotransmitter
26 Amyloid Beta (Aβ)
27 Tau
28 Misfolding

29 Amyloid precursor protein (APP)
30 Amyloid precursor-like protein (APL)
31 γ-Secretase
32 β-Secretase
33 α-Helix
34 β-Sheet
35 Presenilin 1
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سیستم عصبی مرکزی به دلیل مصرف بالای اکسیژن، غلظت پایین 
فلزات،  و  نشده  اشباع  لیپیدهای  بالای  غلظت  اکسیدان‌ها،  آنتی 

بیشترین حساسیت را نسبت به استرس اکسیداتیو دارد )29(. 
استرس  بین  تنگاتنگی  ارتباط  که  دادند  نشان  اخیر  مطالعات 
اکسیداتیو و مرگ نورونی وجود دارد و تخریب نورونی می‌تواند 
کاهش  و همچنین  اکسیداتیو  آسیب  مارکرهای  افزایش  بیانگر 
نورونی  تخریب  بیماری‌های  در  اکسیدان  آنتی  دفاعی  قدرت 
بین  ارتباط  بسیاری  شواهد   .)67-69( باشد  آلزایمر  همچون 
بیماری آلزایمر و استرس اکسیداتیو را گزارش نموده‌اند. در مغز 
بیماران مبتلا به AD، فلزاتی همچون آهن، آلومینیوم، جیوه و 
مس بیشتر است که قادرند تولید رادیکال‌های آزاد را تحریک 
کنند و یک منبع مهم تولید ROS می‌باشند. اين رادكيال‌ها در 
هیپوکامپ و قشر مغزی و هستۀ قاعده‌ای تجمع یافته و لوکالیزه 

می‌شوند )70-72(.
 NFTs Aβ برهم کنش‌های غیر طبيعي فلزات سنگین مغزی با
عنوان  به  همچنین  شده  فعال  گلیال  سلول‌های  و   )73-75(
-78( می‌شوند  گرفته  نظر  در  اکسیداتیو  استرس  بالقوه  منابع 

76(. بر هم کنش غیر طبيعي Aβ با فلزات به ویژه مس، روی 
و آهن به تولید پراکسید هیدروژن و رادیکال‌های هیدروکسیل 
منجر  بهم  متصل  و  شده  اکسید   Aβ اشکال  تولید  آن  پيرو  و 
زیستی36  نشان‏گرهای  دیگر  از سوی   .)73،  75،  79( می‌گردد 
برای اکسیداسیون پروتئین نشان می‌دهند که پروتئین‌های جدا 
شده از مغز افراد مبتلا به AD در مقایسه با پروتئین‌های مغز 
پروتئین‌ها در  این  و  اکسید شده‌اند  بیشتر  افراد سالم همسن، 

نواحی با تخریب نورونی شدید بیشتر یافت می‌شوند )80(. 
و  است  برگشت  غیرقابل  اغلب  پروتئین  اکسیداتیو  آسیب 
و  از دست می‌دهند  را  اکسید شده عملکرد خود  پروتئین‌های 
تمایل به تجمع دارند. این تجمعات پروتئینی برای سلول‌ها سمی 
هستند و در پاتولوژی مشاهده شده  است که در این بیماری 
 DJ-1 پروتئین  مورد  در  آن  مثال  یک   .)81،  82( دارند  نقش 
چاپرون37  عنوان  به   DJ-1 طبيعي،  شرایط  تحت  است.  صادق 
از  پروتئین‌هایی  تجمع  و  اشتباه  تاخوردگی  از  و  می‌کند  عمل 
مبتلا  افراد  بافت مغزی  در  تائو جلوگیری می‌کند )83(.  قبیل 
به AD، ایزوفرم‌های مختلف اکسید شده از این پروتئین یافت 
هستند  عملکردی  غیر  ایزوفرم‌ها  این  از  بسیاری  که  می‌شود 
)84(. تغییرات اکسیداتیو DJ-1 منجر به تجمع پروتئین DJ-1 و 

کاهش عملکرد چاپرونی آن مي‌گردد )86 ،85 ،83(. 
با  و  می‌یابد  افزایش   DJ-1 بیان   ،AD به  مبتلا  افراد  مغز  در 
این  بر  ،83(. علاوه   85( قرار می‌گیرد   NFTs در  فسفریله  تائو 
مارکرهای اکسیداسیون DNA در افراد مبتلا به AD در مقایسه 
به  مبتلا  افراد  مغز  در  می‌یابد.  افزایش  همسن  سالم  افراد  با 
AD، آسیب اکسیداتیو DNA میتوکندریایی و DNA هسته‌ایی 
منجر  اکسیداتیو همچنین  استرس   .)87،  88( می‌یابد  افزایش 

نهایت  در  و   RNA اکسیداتیو  آسیب   ،RNA سنتز  کاهش  به 
تخریب سنتز پروتئین در مغز بيماران مبتلا به AD می‌شود )90 
،89(. مطالعات مختلف نشان دادند که پراکسیداسیون لیپید در 
مغز بیماران مبتلا به AD افزایش می‌یابد و موجب ایجاد مقدار 
از آلدئیدها و به طور خاص 4-هیدروکسی آلکناز38 که  زیادی 
محصول اکسیداسیون اسیدهای چرب غیراشباع است، می‌شود 

 .)80، 91، 92(
با  شده  فعال  میکروگلیاهاي  و  پذیر  کنش  آستروسیت‌هاي 
پلاک‌های Aβ مرتبط هستند و به نظر می‌رسد که هر دو آن‌ها 
در استرس اکسیداتیو مشاهده شده در بیماران آلزایمری شرکت 
می‌کنند. مطالعات آسيب نوروني نشان دادند که بیان نیتریک 
ویژه  به  اکسیداز   NADPH و   39)iNOS( القایی  سنتاز  اکسید 
در سلول‌های آستروسیت و یا میکروگلیاهایی که در ارتباط با 
بیان  القای   .)93،  94( می‌یابد  افزایش  هستند   Aβ پلاک‌های 
iNOS در سلول‌های گلیال به آزاد سازی بیشتر نیتریک اکسید 
استرس  نقش   .)95،  96( می‌گردد  منجر  نیتراتیو40  استرس  و 
اکسیداتیو در پاتولوژی AD آشکار است و به نظر می‌رسد که 

یک رویداد اولیه در تکوین آن است )22(. 
استرس  مارکرهای  سطح  افزایش   ،AD موشی  مدل‌های  در 
پلاک  گیری  از شکل  قبل  آن‌ها  ادرار  و  پلاسما  در  اکسیداتیو 
محصول  یک  عنوان  به  اکسیداتیو  استرس   .)63( می‌دهد  رخ 
به  و  نورونی  تخریب  با  ارتباط  در  و  بوده  میتوکندری  فعالیت 
ویژه AD می‌باشد )97(. در طول دورۀ بیماری کاهش بارزی در 
میتوکندری‌های سالم و همچنین در میکروتوبول‌ها رخ می‌دهد 
)98(. گزارش شده است که مارکرهای استرس اکسیداتیو، حذف 
41mtDNA و ناهنجاری در ساختار میتوکندری، در دیوارۀ عروق 

افراد دارای AD افزایش یافته است )99(. 
میتوکندری، محل  میتوکندریایی، ساختار  آنزیم‌های  در  تغییر 
و تحرک آن‌ها در بیماری آلزایمر دخیل هستند )97(. در این 
بیماران سطوح آنزیم‌های میتوکندریایی مانند کمپلکس پیروات 
دهیدروژناز42، کمپلکس کتوگلوتارات دهیدروژناز43 و سیتوکروم 
سیپریدهایی  دانشمندان  است.  یافته  کاهش  اکسیداز44 
نموده،  ایجاد   AD بیماران  از  تعدادی  از  هیبرید(  )سیتوپلاسم 
سیپریدها  این  در  را  میتوکندری  عملکرد  و  دادند  تکوین 
و...(   AD در  سیتوکروم  اکسیدی  نقش  توضیح  برای  )روشي 
سیپریدهای  در  که  نمودند  بیان  مطالعات  این  کردند.  مطالعه 
افزایش   ROS تولید  بیماران،  این  از  شده  جدا  میتوکندریایی 

یافته و فعالیت سیتوکروم اکسیداز کاهش می‌یابد. 
در  میتوکندری  متورم شدن  میتوکندری شامل  ناهنجاری‌های 
سیپریدهای AD در مقایسه با سیپریدهای جدا شده از نمونه‌های 
کنترل، افزایش یافته است. این یافته‌ها نقش میتوکندری را در 
ایجاد استرس اکسیداتیو در AD تأیید می‌کند. مطالعات سلولی 
موتان  که  کرده‌اند  گزارش  حیوانی  مدل‌های  بیوشیمیایی  و 

36 Biomarkers
37 Chaperone
38 4- Hydroxy-alkenals
39 Inducible nitric oxide synthase (iNOS)
40 Nitrative stress

41 Mitochondrial DNA or mtDNA
42 Pyruvate dehydrogenase
43 Ketoglutarate dehydrogenase complex
44 Cytochrome oxidase
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پروتئین‌هایی شامل ‌PS ها، APP و Aβ با میتوکندری در ارتباط 
بوده و سبب آسیب‌های اکسیداتیو و عدم عملکرد میتوکندری 
در AD می‌شوند )101 ،100(. مطالعات اخیر بیان نموده‌اند که 
Aβ وارد میتوکندری شده و زنجیرۀ انتقال الکترون میتوکندری 
را تخریب نموده و منجر به تولید ROS، مهار تولیدATP، عدم 

عملکرد میتوکندری و تخریب نورونی می‌گردد )102(. 
 مسیر Nrf2-ARE در بیماری آلزایمر

 AD سیستم دفاع آنتی اکسیدان به طور متفاوت در افراد مبتلا به
و مدل‌های موشی AD تغییر می‌یابد )105-103(، به عنوان مثال 
فعالیت کاتالاز در AD کاهش می‌یابد )106( و فعالیت HO به 
طور منفی توسط APP تحت تأثیر قرار می‌گیرد )107(. با این 
حال بیان HO در AD افزایش می‌یابد، سپس با NFTs لوکالیزه 
شده )108( و NQO1 در مغز بیماران مبتلا به AD افزایش يافته 
و در آستروسیت‌ها قرار می‌گیرد )109(. علاوه بر این، افزایش بیان 
 AD در نورون‌های هرمی بزرگ که به فرایند تخریب در SOD1

مستعد هستند، مشاهده مي‌گردد )110(. 
به تازگي پروفایل بیان Nrf2 در بافت مغزی AD مورد بررسی قرار 
گرفته است )111(. در هیپوکامپ طبيعي، Nrf2 در سیتوپلاسم 
بیماران  مغز  در  می‌شود.  جمع  نورون‌ها  هستۀ  در  ویژه  به  و 
مبتلا به AD،م Nrf2 به طور برجسته در سیتوپلاسم نورون‌های 
یا  و   Aβ پلاک‌های  اصلی  و جزء  می‌گردد  لوکالیزه  هیپوکامپ 
به  هسته‌ایی   Nrf2 بیان  گیری سطوح  اندازه  نمی‌باشد.   NFTs
 AD وسیلۀ ایمونوبلاتینگ کاهش معنی‌داری را در افراد مبتلا به
نشان داد )111(. این نتایج نشان می‌دهد که رونویسی با واسطۀ 
اکسیداتیو  استرس  حضور  علی‌رغم   ،AD نورون‌های  در   Nrf2

القاء نمی‌شود )111(. 
مطالعات انجام شده با استفاده از موش ترانسژنکی APP/PS1 یک 
کاهشی را در پروتئین‌های هدف Nrf2-ARE نشان داد )112(. 
از آنجا که استرس اکسیداتیو در پاتوژنز  ADنقش کلیدی ایفاء 
می‌کند و می‌تواند مسیر Nrf2 را فعال کند، هنوز مشخص نيست 
که پاتولوژی AD توسط کاهش در انتقال هسته‌ایی Nrf2 ایجاد 
می‌شود و یا نتیجۀ مرگ نورونی القاء شده توسط Aβ است. به 
منظور کشف آن لازم است که فعالیت و بیان Nrf2 در مراحل 
اولۀی AD مورد بررسی قرار گیرد. با این وجود این یافته‌ها نشان 
می‌دهند که مسیر Nrf2/ARE در AD تخریب می‌شود و حداقل 
بخشی از پاتولوژی این بیماری را شکل می‌دهد )45(. شکل گیری 
DJ-1 غیر عملکردی در AD ممکن است در کاهش این مسیر در 

طول بیماری زایی اين بيماري نقش داشته باشد. 

از آنجا که پروتئین DJ-1 به طور طبيعي فاکتور Nrf2 را پایدار 
می‌کند و از برهم کنش با Keap1 و پيرو آن تخریب پروتئوزومی 
درمانی  ارزش  مطالعات،  تازگي  به   ،)1( می‌کند  جلوگیری  آن 
بردن  بالا  دادند.  نشان   AD را در مدل‌های   Nrf2-ARE مسیر
فعالیت Nrf2 به وسیلۀ TBHQ و یا بیان بیش از حد Nrf2 از 
طریق انتقال ژن با واسطۀ آدنوویروس محافظت را در برابر مرگ 

نورونی القاء شده توسط Aβ1-42 القاء می‌کند )112(. 
لازم به ذكر است كه انتقال حامل‌های لنتی ویروسی کد کنندۀ 
یادگیری  نقایص   ،APP/PS1 موش  هیپوکامپ  درون  به   Nrf2
که شد  گزارش  دیگري  مطالعۀ  در   .)45( می‌بخشند  بهبود  را 

TBHQ در موش‌های صحرايي مدل AD می‌تواند تجمع Aβ و 
القاء شده توسط Aβ را کاهش دهد )113(. این  مرگ سلولی 
است  ممکن   Nrf2 فعالیت  فقدان  كه  می‌دهند  نشان  یافته‌ها 

پاتولوژی مربوط به آمیلوئید را شدت بخشند )45(.
نتیجه گیری

در  را   Nrf2-ARE مسیر  نقش  مختلف  مطالعات  كلي  طور  به 
آسيب‌هاي مختلف در محافظت در برابر توکس‌کیهای مختلف و 
 Nrf2-ARE استرس‌های اکسیداتیو تأیید کرده‌اند. فعالیت مسیر
در AD کاهش ميي‌ابد. ترکیبات طبیعی و مصنوعي مختلف جهت 
القای آنزیم‌های آنتی اکسیدان با واسطۀ Nrf2 شناخته شده‌اند 
كه شامل TBHQ، سولفوروفان و دی متیل فومارات مي‌باشند و 
اثرات محافظتی آن‌ها در مدل‌های حیوانی بیماری آلزایمر ثابت 
شده است. اين تركيبات در کاهش استرس اکسیداتیو و سمیت 

القاء شده توسط Aβ نقش دارند. 
القاء کننده‌های مسیر Nrf2 به طور گسترده در دسترس هستند 
و توانایی عبور از سد خونی -مغزی را دارند. بنابراین فعالسازی 
جهت  بالقوه  درمانی  هدف  یک  عنوان  به  می‌تواند  مسیر  این 
بهبود این بیماری مورد استفاده قرار گیرد )45(. روش‌های دیگر 
بیش  بیان  یا  و   Keap1 اوت  ناک  شامل  مسیر  این  فعالسازی 
از حد Nrf2 و فعالسازی کینازهای بالا دست این مسیر مانند 
3-کیناز  اینوزیتول  فسفاتیدیل   ،45)PKC(م  Cکیناز پروتئین 
 )MAPK( 46 و پروتئین کیناز فعال شده توسط میتوژن)PI3K(
نقش   Keap1 از  آن  و جدا شدن   Nrf2 در فسفوریلاسیون  که 
دارند، می‌توانند به عنوان روش‌های درمانی مفید و امید بخش 
در  بیشتر  تحقیقات  البته  گردند؛  پیشنهاد  آلزایمر  بیماری  در 
به  وابسته  مولکولی  مسیرهای  سایر  بررسی  و  شناخت  زمینۀ 
این  برای درمان  کارآمدتر  Nrf2 جهت کشف روش‌های  مسیر 

بیماری لازم است.

45 Protein kinase C
46 Phosphatidyl inositol 3-kinase
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