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ABSTRACT

Introduction: Long-term potentiation (LTP) is a generic term that applies to a form of activity-
dependent plasticity that induced by high-frequency or theta burst stimulation and results in
enhancement of synaptic transmission. LTP has a key role in learning and memory. Different
types of LTP have been observed in distinctive areas of the central nervous system. Hippocampal
CAL area is vital for the formation of long-term memory. Conclusion: Several studies have
been shown the importance of signaling pathways in the development of memory and learning.
In this review is intended to present an overview of the role of synaptic ion channels, ionotropic

and metabotropic glutamate receptors as well as TrkB receptor in LTP formation of learning and

memory.
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