Nano-Phytosome of Curcumin Improve Behavioral Impairment on Carrageenan-Induced Acute Inflammation Model in Mice

Saeideh Baradaran1*, Akbar Hajizadeh Moghaddam1, Sedigheh Khanjani Jelodar2

1Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Mazandaran, Iran
2Faculty of Basic Sciences, Shahid Beheshti University, Tehran, Iran

Published: 17 April, 2018

Abstract

Inflammatory disorders alone or as a consequence of neurological disease affecting patients in life. Experimental models of inflammation are used to evaluate the production of inflammatory mediators at the site of inflammation. Curcumin is one of the flavonoids possessing potent anti-inflammatory activity. However, because of low water solubility, curcumin’s clinical application has been limited. The present study attempts to assess the effects of curcumin and nano-phytosome of curcumin on improving behavioral impairment and reducing inflammation cytokines in carrageenan-induced inflammation model. Animals have received oral administration of curcumin or nano-phytosome of curcumin at a dose of 15 mg/kg for 7 days before injection of carrageenan. Acute inflammation was induced by injection of carrageenan (1%,) into the subplantar region of left paw in mice. Tail pinch test and hot plate test (for evaluating the threshold of neuroinflammation pain) were performed on ½ h before injection and ½ h, 2 h, 24 h after injection of carrageenan. The results of behavioral tests showed enhancement of antinociceptive effects in the animals receiving curcumin (p<0.01) and nano-phytosome of curcumin (p<0.001) compared to other groups. These results suggested that curcumin and its nano-phytosome improve behavioral impairment and reduce inflammation cytokines following local injection of carrageenan.

Keywords: Carrageenan, Inflammation, Nano-Phytosome of Curcumin, Inflammation Cytokines

*Corresponding Author: Saeideh Baradaran
E-mail: baradaran.phi95@gmail