[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
:: دوره 10، شماره 2 - ( بهار 1401 ) ::
دوره 10 شماره 2 صفحات 103-91 برگشت به فهرست نسخه ها
قدرت نشانگرهای زیستی برای تشخیص و درمان بیماری های پارکینسون و آلزایمر
محمد شاهوردی شهرکی، زهرا سورانی، فاطمه بهداروند، مصطفی مدرس موسوی، صادق شیریان*
الف. گروه پاتولوژی، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران. ب. مرکز تحقیقات آسیب شناسی مولکولی شیراز، آزمایشگاه آسیب شناسی دکتر دانشبد، شیراز، ایران ، Shirian85@gmail.com
چکیده:   (534 مشاهده)
مقدمه: بیماری‌های نورودژنراتیو یا تحلیل برنده عصبی، گروهی از بیماری‌های عصبی همراه با آسیب به نورون نامیده می‌شوند که در بیشتر موراد درمان موثری برای آن وجود ندارد. تشخیص به موقع و دقیق بیماری‌های نورودژنراتیو اهمیت زیادی دارد. تشخیص نادرست یا دیرهنگام این بیماری‌ها می‌تواند منجر به درمان اشتباه و افزایش هزینه بیمار شود. از آنجایی که درمان بیماری‌های نورودژنراتیو باید در مراحل بدون علامت بیماری شروع شود، در سال‌های اخیر محققین تشویق به شناسایی بیومارکرهایی برای تشخیص زودهنگام بیماری‌های مختلف از جمله بیماری های نورودژنراتیو شده‌اند. این بیومارکرها شامل انواع ژنتیکی، مبتنی بر سیالات زیستی و مبتنی بر تصویربرداری هستند. جهش‌های ژنتیکی که باعث یک بیماری نورودژنراتیو خاص می‌شوند، بیومارکرهای ژنتیکی هستند که بیشترین کاربرد را دارند. DNA و RNA نیز با اشکال خانوادگی بیماری‌های نورودژنراتیو مرتبط است. بیومارکرهای مایع مغزی- نخاعی و خونی به‌طور گسترده برای بیماری‌های نورودژنراتیو استفاده می‌شوند. بیومارکرهای مبتنی بر تصویر برداری پبشرفت بسیاری داشته اند و به بیومارکرهای تشخیصی اولیه کمک بسیاری می‌کنند. نتیجه‌گیری: انتخاب چند بیوماکر مناسب با هم در توسعه دارو و آزمایش‌های بالینی برای بیماری‌های نورودژنراتیو به تشخیص به موقع و بررسی اثربخشی دارو در بیماری‌های نورودژنراتیو کمک می‌کند. این مقاله مروری بر انواع و کاربرد بیومارکرها در بیماری آلزایمر و بیماری پارکینسون تمرکز کرده است.
واژه‌های کلیدی: بیماری های تحلیل‎برنده سیستم عصبی، بیماری پارکینسون، بیماری آلزایمر، نشانگرهای زیستی
متن کامل [PDF 528 kb]   (79 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: تحقیقات پایه در علوم اعصاب
فهرست منابع
1. Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature. 2006; 443(7113): 796-802. [DOI:10.1038/nature05293]
2. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders-time for clinical translation? The Journal of clinical investigation. 2010; 120(1): 29-40. [DOI:10.1172/JCI40543]
3. Pal R, Larsen JP, Moller SG. The potential of proteomics in understanding neurodegeneration. Int Rev Neurobiol. 2015; 121: 25-58. [DOI:10.1016/bs.irn.2015.05.002]
4. Montazeri A, Akhlaghi M, Barahimi AR, Jahanbazi Jahan Abad A, Jabbari R. The Role of Metals in Neurodegenerative Diseases of the Central Nervous System. The Neuroscience Journal of Shefaye Khatam. 2020; 8(2): 130-46. [DOI:10.29252/shefa.8.2.130]
5. Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016; 539(7628): 180-6. [DOI:10.1038/nature20411]
6. Rajabi S, Noori S, Zal F, Jahanbazi Jahan-Abad A. Oxidative stress and its different roles in neurodegenerative diseases. Neurosci J Shefaye Khatam. 2017; 5(1): 73-86. [DOI:10.18869/acadpub.shefa.5.1.73]
7. Seshadri S, Wolf PA. Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. The Lancet Neurology. 2007; 6(12): 1106-14. [DOI:10.1016/S1474-4422(07)70291-0]
8. Mehmood A, Maqsood M, Bashir M, Shuyuan Y. A deep Siamese convolution neural network for multi-class classification of Alzheimer disease. Brain sciences. 2020; 10(2): 84. [DOI:10.3390/brainsci10020084]
9. DeTure M, Dickson D. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegeneration 14: 32-49. 2019. [DOI:10.1186/s13024-019-0333-5]
10. Nichols E, Szoeke CE, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, et al. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2019; 18(1): 88-106. [DOI:10.1016/S1474-4422(18)30403-4]
11. De Lau LM, Breteler MM. Epidemiology of Parkinson's disease. The Lancet Neurology. 2006; 5(6): 525-35. [DOI:10.1016/S1474-4422(06)70471-9]
12. Rezaee Z. The Effect of Exercise on Parkinson's Disease. The Neuroscience Journal of Shefaye Khatam. 2020; 9(1): 189-99. [DOI:10.52547/shefa.9.1.189]
13. Kalia L, Lang A. Parkinson's disease. Lancet 386: 896-912. Molecular therapy: methods & clinical Development CAS. 2015. [DOI:10.1016/S0140-6736(14)61393-3]
14. Ahmadi M, Sharifi MS. Treatments of Parkinson's disease, Epilepsy and obsessive compulsive disorder with deep brain stimulation. Shefaye Khatam. 2014; 2(1): 95-100. [DOI:10.18869/acadpub.shefa.2.1.95]
15. Rezaee Z, Marandi SM, Alaei H, Esfarjani F. Molecular Mechanisms of Parkinson's Disease. The Neuroscience Journal of Shefaye Khatam. 2019; 8(1): 120-8. [DOI:10.29252/shefa.8.1.120]
16. Jeromin A, Bowser R. Biomarkers in neurodegenerative diseases. Neurodegenerative Diseases. 2017: 491-528. [DOI:10.1007/978-3-319-57193-5_20]
17. Hunter CA, Kirson NY, Desai U, Cummings AKG, Faries DE, Birnbaum HG. Medical costs of Alzheimer's disease misdiagnosis among US Medicare beneficiaries. Alzheimer's & Dementia. 2015; 11(8): 887-95. [DOI:10.1016/j.jalz.2015.06.1889]
18. Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016; 86(6): 566-76. [DOI:10.1212/WNL.0000000000002350]
19. Respondek G, Grimm MJ, Piot I, Arzberger T, Compta Y, Englund E, et al. Validation of the movement disorder society criteria for the diagnosis of 4‐repeat tauopathies. Movement Disorders. 2020; 35(1): 171-6. [DOI:10.1002/mds.27872]
20. Behroozi Z, Atefimanesh P, Karimzadeh F. Structural and Metabolic Biomarkers in Multiple Sclerosis. The Neuroscience Journal of Shefaye Khatam. 2018; 6(2): 94-108. [DOI:10.29252/shefa.6.2.94]
21. Group BDW, Atkinson Jr AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical pharmacology & therapeutics. 2001; 69(3): 89-95. [DOI:10.1067/mcp.2001.113989]
22. Comabella M, Montalban X. Body fluid biomarkers in multiple sclerosis. The Lancet Neurology. 2014; 13(1): 113-26. [DOI:10.1016/S1474-4422(13)70233-3]
23. Vučićević D, Schrewe H, Andersson Ørom U. Molecular mechanisms of long ncRNAs in neurological disorders. Frontiers in genetics. 2014; 5: 48. [DOI:10.3389/fgene.2014.00048]
24. Wan P, Su W, Zhuo Y. The role of long noncoding RNAs in neurodegenerative diseases. Mol Neurobiol. 2017; 54(3): 2012-21. [DOI:10.1007/s12035-016-9793-6]
25. Quinn JF, Patel T, Wong D, Das S, Freedman JE, Laurent LC, et al. Extracellular RNAs: development as biomarkers of human disease. Journal of extracellular vesicles. 2015; 4(1): 27495. [DOI:10.3402/jev.v4.27495]
26. Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell and tissue research. 2013; 352(1): 33-47. [DOI:10.1007/s00441-012-1428-2]
27. Cohn‐Hokke PE, Elting MW, Pijnenburg YA, van Swieten JC. Genetics of dementia: update and guidelines for the clinician. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2012; 159(6): 628-43. [DOI:10.1002/ajmg.b.32080]
28. Schmechel D, Saunders A, Strittmatter W, Crain BJ, Hulette C, Joo S, et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proceedings of the National Academy of Sciences. 1993; 90(20): 9649-53. [DOI:10.1073/pnas.90.20.9649]
29. Corder E, Saunders AM, Risch N, Strittmatter W, Schmechel D, Gaskell P, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature genetics. 1994; 7(2): 180-4. [DOI:10.1038/ng0694-180]
30. Khaledi S, Ahmadi S. Amyloid Beta and Tau: from Physiology to Pathology in Alzheimer's disease. Shefaye Khatam. 2016; 4(4): 67-88. [DOI:10.18869/acadpub.shefa.4.4.67]
31. Adalbert R, Gilley J, Coleman MP. Aβ, tau and ApoE4 in Alzheimer's disease: the axonal connection. Trends in molecular medicine. 2007; 13(4): 135-42. [DOI:10.1016/j.molmed.2007.02.004]
32. Zou Z, Liu C, Che C, Huang H. Clinical genetics of Alzheimer's disease. BioMed research international. 2014; 2014. [DOI:10.1155/2014/291862]
33. Medway C, Morgan K. The genetics of A lzheimer's disease; putting flesh on the bones. Neuropathol Appl Neurobiol. 2014; 40(2): 97-105. [DOI:10.1111/nan.12101]
34. Klein E, Vicic M, Ma C, Li J, Stathakis S, Low D. 2818: Planning, Delivery, and Optimization of Dynamically Modulated Electrons. International Journal of Radiation Oncology, Biology, Physics. 2006; 66(3): S669-S70. [DOI:10.1016/j.ijrobp.2006.07.1236]
35. Deng H-X, Shi Y, Yang Y, Ahmeti KB, Miller N, Huang C, et al. Identification of TMEM230 mutations in familial Parkinson's disease. Nature genetics. 2016; 48(7): 733-9. [DOI:10.1038/ng.3589]
36. Vazifehkhah S, Karimzadeh F. Parkinson Disease: from Pathophysiology to the Animal Models. The Neuroscience Journal of Shefaye Khatam. 2016; 4(3): 91-102. [DOI:10.18869/acadpub.shefa.4.3.91]
37. Khoo SK, Petillo D, Kang UJ, Resau JH, Berryhill B, Linder J, et al. Plasma-based circulating MicroRNA biomarkers for Parkinson's disease. Journal of Parkinson's disease. 2012; 2(4): 321-31. [DOI:10.3233/JPD-012144]
38. Mouradian MM. MicroRNAs in Parkinson's disease. Neurobiology of disease. 2012; 46(2): 279-84. [DOI:10.1016/j.nbd.2011.12.046]
39. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. The Lancet Neurology. 2016; 15(7): 673-84. [DOI:10.1016/S1474-4422(16)00070-3]
40. Abraki SB, Chavoshi-Nezhad S. Alzheimer's disease: The effect of nrf2 signaling pathway on cell death caused by oxidative stress. Neurosci J Shefaye Khatam. 2014; 3: 145-56. [DOI:10.18869/acadpub.shefa.3.1.145]
41. Kang J-H, Korecka M, Toledo JB, Trojanowski JQ, Shaw LM. Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-β1-42 and τ proteins as Alzheimer disease biomarkers. Clinical chemistry. 2013; 59(6): 903-16. [DOI:10.1373/clinchem.2013.202937]
42. Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A. Cerebrospinal fluid tau and β-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Archives of Neurology. 2002; 59(11): 1729-34. [DOI:10.1001/archneur.59.11.1729]
43. Zetterberg H, Skillbäck T, Mattsson N, Trojanowski JQ, Portelius E, Shaw LM, et al. Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression. JAMA neurology. 2016; 73(1): 60-7. [DOI:10.1001/jamaneurol.2015.3037]
44. Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx. 2004; 1(2): 226-34. [DOI:10.1602/neurorx.1.2.226]
45. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case‐control study. Alzheimer's & Dementia. 2015; 11(6): 600-7. e1. [DOI:10.1016/j.jalz.2014.06.008]
46. Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. The EMBO journal. 2014; 33(1): 7-22. [DOI:10.1002/embj.201386609]
47. Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Müller-Tillmanns B, et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer's disease. Neuron. 2003; 38(4): 547-54. [DOI:10.1016/S0896-6273(03)00294-0]
48. Reardon S. Antibody drugs for Alzheimer's show glimmers of promise. Nature. 2015; 523(7562): 509-10. [DOI:10.1038/nature.2015.18031]
49. Davydova T, Voskresenskaya N, Fomina V, Vetrile L, Doronina O. Induction of autoantibodies to glutamate in patients with Alzheimer's disease. Bull Exp Biol Med. 2007; 143(2): 182-3. [DOI:10.1007/s10517-007-0044-8]
50. Gruden MA, Davidova TB, Mališauskas M, Sewell RD, Voskresenskaya NI, Wilhelm K, et al. Differential neuroimmune markers to the onset of Alzheimer's disease neurodegeneration and dementia: Autoantibodies to Aβ (25-35) oligomers, S100b and neurotransmitters. J Neuroimmunol. 2007; 186(1-2): 181-92. [DOI:10.1016/j.jneuroim.2007.03.023]
51. Koval L, Lykhmus O, Kalashnyk O, Bachinskaya N, Kravtsova G, Soldatkina M, et al. The presence and origin of autoantibodies against α4 and α7 nicotinic acetylcholine receptors in the human blood: possible relevance to Alzheimer's pathology. Journal of Alzheimer's Disease. 2011; 25(4): 747-61. [DOI:10.3233/JAD-2011-101845]
52. Giil LM, Kristoffersen EK, Vedeler CA, Aarsland D, Nordrehaug JE, Winblad B, et al. Autoantibodies toward the angiotensin 2 type 1 receptor: A novel autoantibody in Alzheimer's disease. Journal of Alzheimer's Disease. 2015; 47(2): 523-9. [DOI:10.3233/JAD-150053]
53. Mogi M, Iwanami J, Horiuchi M. Roles of brain angiotensin II in cognitive function and dementia. International Journal of Hypertension. 2012; 2012. [DOI:10.1155/2012/169649]
54. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain. 2010; 133(3): 713-26. [DOI:10.1093/brain/awq008]
55. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Döring F, Trenkwalder C, Schlossmacher MG. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. The Lancet Neurology. 2011; 10(3): 230-40. [DOI:10.1016/S1474-4422(11)70014-X]
56. Hall S, Surova Y, Öhrfelt A, Zetterberg H, Lindqvist D, Hansson O. CSF biomarkers and clinical progression of Parkinson disease. Neurology. 2015; 84(1): 57-63. [DOI:10.1212/WNL.0000000000001098]
57. Van Dijk K, Bidinosti M, Weiss A, Raijmakers P, Berendse H, van de Berg W. Reduced α‐synuclein levels in cerebrospinal fluid in P arkinson's disease are unrelated to clinical and imaging measures of disease severity. European Journal of Neurology. 2014; 21(3): 388-94. [DOI:10.1111/ene.12176]
58. Lee P, Lee G, Park H, Bang O, Joo I, Huh K. The plasma alpha-synuclein levels in patients with Parkinson's disease and multiple system atrophy. J Neural Transm. 2006; 113(10): 1435-9. [DOI:10.1007/s00702-005-0427-9]
59. Li Q-X, San Mok S, Laughton KM, McLean CA, Cappai R, Masters CL, et al. Plasma α-synuclein is decreased in subjects with Parkinson's disease. Exp Neurol. 2007; 204(2): 583-8. [DOI:10.1016/j.expneurol.2006.12.006]
60. Salvesen L, Bech S, Lokkegaard A, Hjermind LE, Nielsen JE, Pakkenberg B, et al. The DJ-1 concentration in cerebrospinal fluid does not differentiate among Parkinsonian syndromes. Parkinsonism & related disorders. 2012; 18(7): 899-901. [DOI:10.1016/j.parkreldis.2012.03.013]
61. Shi M, Zabetian CP, Hancock AM, Ginghina C, Hong Z, Yearout D, et al. Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson's disease. Neurosci Lett. 2010; 480(1): 78-82. [DOI:10.1016/j.neulet.2010.06.009]
62. Shi M, Kovac A, Korff A, Cook TJ, Ginghina C, Bullock KM, et al. CNS tau efflux via exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease. Alzheimer's & Dementia. 2016; 12(11): 1125-31. [DOI:10.1016/j.jalz.2016.04.003]
63. Zhao Z-H, Chen Z-T, Zhou R-L, Zhang X, Ye Q-Y, Wang Y-Z. Increased DJ-1 and α-synuclein in plasma neural-derived exosomes as potential markers for Parkinson's disease. Frontiers in aging neuroscience. 2019: 438. [DOI:10.3389/fnagi.2018.00438]
64. Yamagishi Y, Saigoh K, Saito Y, Ogawa I, Mitsui Y, Hamada Y, et al. Diagnosis of Parkinson's disease and the level of oxidized DJ-1 protein. Neurosci Res. 2018; 128: 58-62. [DOI:10.1016/j.neures.2017.06.008]
65. Shen C, Guo Y, Luo W, Lin C, Ding M. Serum urate and the risk of Parkinson's disease: results from a meta-analysis. Canadian journal of neurological sciences. 2013; 40(1): 73-9. [DOI:10.1017/S0317167100012981]
66. Weisskopf M, O'reilly E, Chen H, Schwarzschild M, Ascherio A. Plasma urate and risk of Parkinson's disease. Am J Epidemiol. 2007; 166(5): 561-7. [DOI:10.1093/aje/kwm127]
67. Schwarzschild MA, Schwid SR, Marek K, Watts A, Lang AE, Oakes D, et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Archives of neurology. 2008; 65(6): 716-23. [DOI:10.1001/archneur.2008.65.6.nct70003]
68. Ziebell M, Khalid U, Klein AB, Aznar S, Thomsen G, Jensen P, et al. Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration. Neurobiology of aging. 2012; 33(2): 428. e1-. e5. [DOI:10.1016/j.neurobiolaging.2010.11.010]
69. Costa A, Peppe A, Carlesimo GA, Zabberoni S, Scalici F, Caltagirone C, et al. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson's disease patients with mild cognitive impairment. Frontiers in behavioral neuroscience. 2015; 9: 253. [DOI:10.3389/fnbeh.2015.00253]
70. Picillo M, Erro R, Santangelo G, Pivonello R, Longo K, Pivonello C, et al. Insulin-like growth factor-1 and progression of motor symptoms in early, drug-naïve Parkinson's disease. Journal of neurology. 2013; 260(7): 1724-30. [DOI:10.1007/s00415-013-6851-0]
71. Mollenhauer B, Trenkwalder C, von Ahsen N, Bibl M, Steinacker P, Brechlin P, et al. Beta-amlyoid 1-42 and tau-protein in cerebrospinal fluid of patients with Parkinson's disease dementia. Dementia and geriatric cognitive disorders. 2006; 22(3): 200-8. [DOI:10.1159/000094871]
72. Compta Y, Martí MJ, Ibarretxe‐Bilbao N, Junqué C, Valldeoriola F, Munoz E, et al. Cerebrospinal tau, phospho‐tau, and beta‐amyloid and neuropsychological functions in Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society. 2009; 24(15): 2203-10. [DOI:10.1002/mds.22594]
73. Pasand Mojdeh H, Alipour F, Borhani Haghighi M. Alzheimer's disease: Background, current and future aspects. The Neuroscience Journal of Shefaye Khatam. 2016; 4(3): 70-80. [DOI:10.18869/acadpub.shefa.4.3.70]
74. Palmqvist S, Zetterberg H, Mattsson N, Johansson P, Minthon L, Blennow K, et al. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology. 2015; 85(14): 1240-9. [DOI:10.1212/WNL.0000000000001991]
75. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2004; 55(3): 306-19. [DOI:10.1002/ana.20009]
76. Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiology of aging. 2010; 31(8): 1275-83. [DOI:10.1016/j.neurobiolaging.2010.04.007]
77. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Annals of neurology. 2006; 59(3): 512-9. [DOI:10.1002/ana.20730]
78. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiology of aging. 2008; 29(10): 1456-65. [DOI:10.1016/j.neurobiolaging.2007.03.029]
79. Anchisi D, Borroni B, Franceschi M, Kerrouche N, Kalbe E, Beuthien-Beumann B, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Archives of neurology. 2005; 62(11): 1728-33. [DOI:10.1001/archneur.62.11.1728]
80. Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and 18F-FDG PET. Journal of Nuclear Medicine. 2005; 46(10): 1625-32.
81. Villemagne VL. Amyloid imaging: past, present and future perspectives. Ageing research reviews. 2016; 30: 95-106. [DOI:10.1016/j.arr.2016.01.005]
82. Apostolova LG, Dutton RA, Dinov ID, Hayashi KM, Toga AW, Cummings JL, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of neurology. 2006; 63(5): 693-9. [DOI:10.1001/archneur.63.5.693]
83. Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, et al. Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. Neuroimage. 2009; 45(1): S3-S15. [DOI:10.1016/j.neuroimage.2008.10.043]
84. Chételat G, Fouquet M, Kalpouzos G, Denghien I, De La Sayette V, Viader F, et al. Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry. Neuropsychologia. 2008; 46(6): 1721-31. [DOI:10.1016/j.neuropsychologia.2007.11.037]
85. Chételat G, Villemagne VL, Bourgeat P, Pike KE, Jones G, Ames D, et al. Relationship between atrophy and β‐amyloid deposition in Alzheimer disease. Annals of neurology. 2010; 67(3): 317-24.
86. Archer HA, Edison P, Brooks DJ, Barnes J, Frost C, Yeatman T, et al. Amyloid load and cerebral atrophy in Alzheimer's disease: An 11C‐PIB positron emission tomography study. Annals of neurology. 2006; 60(1): 145-7. [DOI:10.1002/ana.20889]
87. Seifert KD, Wiener JI. The impact of DaTscan on the diagnosis and management of movement disorders: A retrospective study. American journal of neurodegenerative disease. 2013; 2(1): 29.
88. Schwingenschuh P, Ruge D, Edwards MJ, Terranova C, Katschnig P, Carrillo F, et al. Distinguishing SWEDDs patients with asymmetric resting tremor from Parkinson's disease: a clinical and electrophysiological study. Movement disorders. 2010; 25(5): 560-9. [DOI:10.1002/mds.23019]
89. Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage. 2005; 26(3): 912-21. [DOI:10.1016/j.neuroimage.2005.03.012]
90. Berg D, Seppi K, Behnke S, Liepelt I, Schweitzer K, Stockner H, et al. Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease: a 37-month 3-center study of 1847 older persons. Archives of neurology. 2011; 68(7): 932-7. [DOI:10.1001/archneurol.2011.141]
91. Helmich RC, Thaler A, Van Nuenen BF, Gurevich T, Mirelman A, Marder KS, et al. Reorganization of corticostriatal circuits in healthy G2019S LRRK2 carriers. Neurology. 2015; 84(4): 399-406. [DOI:10.1212/WNL.0000000000001189]
92. Vilas D, Ispierto L, Álvarez R, Pont-Sunyer C, Martí MJ, Valldeoriola F, et al. Clinical and imaging markers in premotor LRRK2 G2019S mutation carriers. Parkinsonism & Related Disorders. 2015; 21(10): 1170-6. [DOI:10.1016/j.parkreldis.2015.08.007]


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahverdi Shahraki M, Sourani Z, Behdarvand F, Modarres Mousavi M, Shirian S. The Potency of Biomarkers for the Diagnosis and Treatment of Parkinson's Disease and Alzheimer's Disease. Shefaye Khatam. 2022; 10 (2) :91-103
URL: http://shefayekhatam.ir/article-1-2321-fa.html

شاهوردی شهرکی محمد، سورانی زهرا، بهداروند فاطمه، مدرس موسوی مصطفی، شیریان صادق. قدرت نشانگرهای زیستی برای تشخیص و درمان بیماری های پارکینسون و آلزایمر. مجله علوم اعصاب شفای خاتم. 1401; 10 (2) :103-91

URL: http://shefayekhatam.ir/article-1-2321-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 2 - ( بهار 1401 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4463