1. Kooijmans H, Post MWM, Stam HJ, van der Woude LHV, Spijkerman DCM, Snoek GJ, Bongers-Janssen HMH, van Koppenhagen CF, Twisk JW; ALLRISC Group; Bussmann JBJ. Effectiveness of a Self-Management Intervention to Promote an Active Lifestyle in Persons with Long-Term Spinal Cord Injury: The HABITS Randomized Clinical Trial. Neurorehabil Neural Repair. 2017 Dec;31(12):991-1004. doi: 10.1177/1545968317736819. PMID: 29256337. [ DOI:10.1177/1545968317736819] 2. Singh A., Tetreault L., Kalsi-Ryan S., Nouri A., Fehlings M.G. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 2014; 6: 309-31. [ DOI:10.2147/CLEP.S68889] 3. Lee B.B., Cripps R.A., Fitzharris M., Wing P.C. The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate. Spinal Cord. 2014; 52: 110-16. doi: 10.1038/sc.2012.158 [ DOI:10.1038/sc.2012.158] 4. Montoto-Marqués A, Ferreiro-Velasco ME, Salvador-de la Barrera S, Balboa-Barreiro V, Rodriguez-Sotillo A, Meijide-Failde R. Epidemiology of traumatic spinal cord injury in Galicia, Spain: trends over a 20-year period. Spinal Cord. 2017 Jun;55(6):588-594. doi: 10.1038/sc.2017.13. Epub 2017 Feb 14. PMID: 28195230. [ DOI:10.1038/sc.2017.13] 5. Mu J, Wu J, Cao J, Ma T, Li L, Feng S, Gao J. Rapid and effective treatment of traumatic spinal cord injury using stem cell derived exosomes. Asian journal of pharmaceutical sciences. 2021 Nov 1;16(6):806-815. [ DOI:10.1016/j.ajps.2021.10.002] 6. Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci. 2020 Oct 13;21(20):7533. doi: 10.3390/ijms21207533. PMID: 33066029; PMCID: PMC7589539. [ DOI:10.3390/ijms21207533] 7. Yang, B., Zhang, F., Cheng, F., Ying, L., Wang, C., Shi, K., et al. (2020). Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis. 11 (6), 439. doi:10.1038/s41419-020-2620-z [ DOI:10.1038/s41419-020-2620-z] 8. Behdarvand, F., Shahverdi Shahraki, M., Sourani, Z., Modarres Mousavi, M., & Shirian, S. Roles of different types of stem cells in treating neurodegenerative disease. The Neuroscience Journal of Shefaye Khatam, 2022;10(2): 111-125. [ DOI:10.61186/shefa.10.2.111] 9. Hassanpourezatti M, Nikookar Z. Stem Cells and their Applications for the Treatment of Injuries to the Central Nervous System. 2021; 9:7 [ DOI:10.52547/shefa.9.3.116] 10. Gashmardi N, Edalatmanesh MA. Cellular and Molecular Mechanisms nvolved in Neuroinflammation after Acute Traumatic Spinal Cord Injury 2019; :789-105 [ DOI:10.29252/shefa.7.4.89] 11. Fogarty MJ, Zhan WZ, Simmon VF, Vanderklish PW, Sarraf ST, Sieck GC. Novel regenerative drug, SPG302 promotes functional recovery of diaphragm muscle activity after cervical spinal cord injury. The Journal of Physiology. 2023 Feb 23. [ DOI:10.1113/JP284004] 12. Geisler FH, Moghaddamjou A, Wilson JR, Fehlings MG. Methylprednisolone in acute traumatic spinal cord injury: case-matched outcomes from the NASCIS2 and Sygen historical spinal cord injury studies with contemporary statistical analysis. Journal of Neurosurgery: Spine. 2023 Jan 13;1(aop):1-12. [ DOI:10.3171/2022.12.SPINE22713] 13. Wu J, Jiang H, Bi Q, Luo Q, Li J, Zhang Y, Chen Z, Li C. Apamin-mediated actively targeted drug delivery for treatment of spinal cord injury: more than just a concept. Molecular Pharmaceutics. 2014 Sep 2;11(9):3210-3222. [ DOI:10.1021/mp500393m] 14. Zhang H, Wu C, Yu DD, Su H, Chen Y, Ni W. Piperine attenuates the inflammation, oxidative stress, and pyroptosis to facilitate recovery from spinal cord injury via autophagy enhancement. Phytotherapy Research. 2023 Feb;37(2):438-451. [ DOI:10.1002/ptr.7625] 15. Cotinat M, Boquet I, Ursino M, Brocard C, Jouve E, Alberti C, Bensoussan L, Viton JM, Brocard F, Blin O. Riluzole for treating spasticity in patients with chronic traumatic spinal cord injury: Study protocol in the phase ib/iib adaptive multicenter randomized controlled RILUSCI trial. PloS one. 2023 Jan 20;18(1): e0276892. [ DOI:10.1371/journal.pone.0276892] 16. Myatich A, Haque A, Sole C, Banik NL. Clemastine in remyelination and protection of neurons and skeletal muscle after spinal cord injury. Neural Regeneration Research. 2023 May 1;18(5):940-6. [ DOI:10.4103/1673-5374.355749] 17. Xiao S, Zhang Y, Liu Z, Li A, Tong W, Xiong X, Nie J, Zhong N, Zhu G, Liu J, Liu Z. Alpinetin inhibits neuroinflammation and neuronal apoptosis via targeting the JAK2/STAT3 signaling pathway in spinal cord injury. CNS Neuroscience & Therapeutics. 2023 Jan 10. [ DOI:10.1111/cns.14085] 18. Li M, Huan Y, Wang X, Tao M, Jiang T, Xie H, Jisiguleng W, Xing W, Zhu Z, Wang A, He Y. Calycosin ameliorates spinal cord injury by targeting Hsp90 to inhibit oxidative stress and apoptosis of nerve cells. Journal of Chemical Neuroanatomy. 2023 Jan 1; 127: 102190. [ DOI:10.1016/j.jchemneu.2022.102190] 19. Gu G, Ren J, Zhu B, Shi Z, Feng S, Wei Z. Multiple mechanisms of curcumin targeting spinal cord injury. Biomedicine & Pharmacotherapy. 2023 Mar 1; 159: 114224. [ DOI:10.1016/j.biopha.2023.114224] 20. Qian L, Yang K, Liu X, Zhang L, Zhao H, Qiu LZ, Chu Y, Hao W, Zhuang Y, Chen Y, Dai J. Baicalein-functionalized collagen scaffolds direct neuronal differentiation toward enhancing spinal cord injury repair. Biomaterials Science. 2023. [ DOI:10.1039/D2BM01467J] 21. Rao Y, Li J, Qiao R, Luo J, Liu Y. Tetramethylpyrazine and Astragaloside IV have synergistic effects against spinal cord injury-induced neuropathic pain via the OIP5-AS1/miR-34a/Sirt1/NF-κB axis. International Immunopharmacology. 2023 Feb 1; 115: 109546 [ DOI:10.1016/j.intimp.2022.109546] 22. Liu Y, Zhang F, Sun Q, Liang L. Adalimumab combined with erythropoietin improves recovery from spinal cord injury by suppressing microglial M1 polarization-mediated neural inflammation and apoptosis. Inflammopharmacology. 2023 Jan 15:1-11 [ DOI:10.1007/s10787-022-01090-z] 23. Wen S, Zou ZR, Cheng S, Guo H, Hu HS, Zeng FZ, Mei XF. Ginsenoside Rb1 improves energy metabolism after spinal cord injury. Neural Regeneration Research. 2023 Jun 1;18(6):1332-8. [ DOI:10.4103/1673-5374.357915] 24. Wang S, Zhang Y, Lou J, Yong H, Shan S, Liu Z, Song M, Zhang C, Kou R, Liu Z, Yu W. The therapeutic potential of berberine chloride against SARM1‐dependent axon degeneration in acrylamide‐induced neuropathy. Phytotherapy Research. 2023 Jan;37(1):77-88. [ DOI:10.1002/ptr.7594] 25. Gao ZS, Zhang CJ, Xia N, Tian H, Li DY, Lin JQ, Mei XF, Wu C. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomaterialia. 2021 May 1; 126: 211-223. [ DOI:10.1016/j.actbio.2021.03.018] 26. Wang H, Liu C, Mei X, Cao Y, Guo Z, Yuan Y, Zhao Z, Song C, Guo Y, Shen Z. Berberine attenuated pro-inflammatory factors and protect against neuronal damage via triggering oligodendrocyte autophagy in spinal cord injury. Oncotarget. 2017 Nov 11;8(58):98312. [ DOI:10.18632/oncotarget.21203] 27. Jafarimanesh MA, Ai J, Shojaei S, Khonakdar HA, Darbemamieh G, Shirian S. Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Progress in Biomaterials. 2023 Jan 18:1-12. [ DOI:10.1007/s40204-022-00209-3] 28. Ulas M, Argadal OG. Trace element, antioxidant and oxidant levels in spinal cord injury: different perspective on the effects of valproic acid. European Review for Medical & Pharmacological Sciences. 2023 May 1;27(9). 29. Jiang W, He F, Ding G, Wu J. Elamipretide reduces pyroptosis and improves functional recovery after spinal cord injury. CNS Neuroscience & Therapeutics. 2023 Apr 20. [ DOI:10.1111/cns.14221] 30. Montoto-Meijide R, Meijide-Faílde R, Díaz-Prado SM, Montoto-Marqués A. Mesenchymal Stem Cell Therapy in Traumatic Spinal Cord Injury: A Systematic Review. Int J Mol Sci. 2023 Jul 20;24(14):11719. doi: 10.3390/ijms241411719. PMID: 37511478; PMCID: PMC10380897. [ DOI:10.3390/ijms241411719] 31. Ahuja C.S., Mothe A., Khazaei M., Badhiwala J.H., Gilbert E.A., van der Kooy D., Morshead C.M., Tator C., Fehlings M.G. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl. Med. 2020; 9: 1509-530. [ DOI:10.1002/sctm.19-0135] 32. Shao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther. 2019 Aug 6;10(1):238. doi: 10.1186/s13287-019-1357-z. PMID: 31387621; PMCID: PMC6683526. [ DOI:10.1186/s13287-019-1357-z] 33. Xiong LL, Liu F, Deng SK, Liu J, Dan QQ, Zhang P, Wang TH. Transplantation of hematopoietic stem cells promotes functional improvement associated with NT-3-MEK-1 activation in spinal cord-transected rats. Frontiers in Cellular Neuroscience, 2017;11, 213. [ DOI:10.3389/fncel.2017.00213] 34. Gao L, Peng Y, Xu W, He P, Li T, Lu X, Chen G. Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int. 2020 Nov 5; 2020: 2853650. doi: 10.1155/2020/2853650. PMID: 33204276; PMCID: PMC7661146. [ DOI:10.1155/2020/2853650] 35. Han D, Wu C, Xiong Q, Zhou L, Tian Y. Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury. Cell Biochem Biophys. 2015 Apr;71(3):1341-7. doi: 10.1007/s12013-014-0354-1. PMID: 25388837. [ DOI:10.1007/s12013-014-0354-1] 36. Shirian S, Ebrahimi-Barough S, Saberi H. Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly (ε-caprolactone) scaffold. Molecular neurobiology, 2016;53, 5278-5287. [ DOI:10.1007/s12035-015-9442-5] 37. Huang L, Fu C, Xiong F, He C, Wei Q. Stem Cell Therapy for Spinal Cord Injury. Cell Transplant. 2021 Jan-Dec; 30: 963689721989266. doi: 10.1177/0963689721989266. PMID: 33559479; PMCID: PMC7876757. [ DOI:10.1177/0963689721989266] 38. Ruzicka J, Machova-Urdzikova L, Gillick J, Amemori T, Romanyuk N, Karova K, Zaviskova K, Dubisova J, Kubinova S, Murali R, Sykova E. A comparative study of three different types of stem cells for treatment of rat spinal cord injury. Cell transplantation. 2017 Apr;26(4):585-603 [ DOI:10.3727/096368916X693671] 39. Ai A, Hasanzadeh E, Safshekan F, Astaneh ME, SalehiNamini M, Naser R, Madani F, Shirian S, Jahromi HK, Ai J. Enhanced spinal cord regeneration by gelatin/alginate hydrogel scaffolds containing human endometrial stem cells and curcumin-loaded PLGA nanoparticles in rat. Life Sci. 2023 Oct 1; 330: 122035. Epub 2023 Aug 22. PMID: 37611693. [ DOI:10.1016/j.lfs.2023.122035] 40. Ai J, Farzin A, Zamiri S, Hadjighassem M et al. Repair of injured spinal cord using platelet-rich plasma-and endometrial stem cells-loaded chitosan scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021: 70(14), 1002-1011. [ DOI:10.1080/00914037.2020.1772257] 41. Mahya S, Ai J, Shojae S, Khonakdar HA, Darbemamieh G, Shirian S. Berberine loaded chitosan nanoparticles encapsulated in polysaccharide-based hydrogel for the repair of spinal cord. Int J Biol Macromol. 2021 Jul 1 ;182: 82-90. doi: 10.1016/j.ijbiomac.2021.03.106. Epub 2021 Mar 22. PMID: 33766598. [ DOI:10.1016/j.ijbiomac.2021.03.106] 42. Babaloo H, Ebrahimi-Barough S, Derakhshan MA, Yazdankhah M, Lotfibakhshaiesh N, Soleimani M, Joghataei MT, Ai J. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol. 2019 Jul;234(7):11060-11069. doi: 10.1002/jcp.27936. Epub 2018 Dec 24. PMID: 30584656. [ DOI:10.1002/jcp.27936] 43. Edgar JR. Q & A: What are exosomes, exactly? BMC Biol. 2016;14:46. [ DOI:10.1186/s12915-016-0268-z] 44. Yang C, Robbins PD. The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol. 2011;2011:842849. [ DOI:10.1155/2011/842849] 45. Jia Y, Chen Y , Wang Q, Jayasinghe U, Luo X, Wei Q, et al. Exosome: Emerging biomarker in breast cancer. Oncotarget. 2017;8:41717-41733. [ DOI:10.18632/oncotarget.16684] 46. Norouzi‑Barough L, Khosro Shahi AA, Mohebzadeh F, Masoumi L, Haddadi MR, Shirian S. Early diagnosis of breast and ovarian cancers by body fluids circulating tumor‑derived exosomes. Cancer Cell Int. 2020; 20: 187. [ DOI:10.1186/s12935-020-01276-x] 47. Zhang C, Deng R, Zhang G, He X, Chen H, Chen B, Wan L, Kang X. Therapeutic Effect of Exosomes Derived from Stem Cells in Spinal Cord Injury: A Systematic Review Based on Animal Studies. Frontiers in Neurology. 2022;13. [ DOI:10.3389/fneur.2022.847444] 48. Zhang M, Wang L, Huang S, He X. Exosomes with high level of miR-181c from bone marrow-derived mesenchymal stem cells inhibit inflammation and apoptosis to alleviate spinal cord injury. J Mol Histol. 2021 Apr;52(2):301-311. doi: 10.1007/s10735-020-09950-0. Epub 2021 Feb 6. PMID: 33548000. [ DOI:10.1007/s10735-020-09950-0] 49. Fan L, Dong J, He X, Zhang C, Zhang T. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Hum Exp Toxicol. 2021 Oct;40(10):1612-1623. doi: 10.1177/09603271211003311. Epub 2021 Mar 29. PMID: 33779331. [ DOI:10.1177/09603271211003311] 50. Zhang X, Jiang W, Lu Y, Mao T, Gu Y, Ju D, Dong C. Exosomes combined with biomaterials in the treatment of spinal cord injury. Front Bioeng Biotechnol. 2023 Mar 13; 11: 1077825. doi: 10.3389/fbioe.2023.1077825. PMID: 36994357; PMCID: PMC10040754. [ DOI:10.3389/fbioe.2023.1077825] 51. Zhang X, Jiang W, Lu Y, Mao T, Gu Y, Ju D, Dong C. Exosomes combined with biomaterials in the treatment of spinal cord injury. Front Bioeng Biotechnol. 2023 Mar 13; 11: 1077825. doi: 10.3389/fbioe.2023.1077825. PMID: 36994357; PMCID: PMC10040754. [ DOI:10.3389/fbioe.2023.1077825] 52. Sun G, Li G, Li D, Huang W, Zhang R, Zhang H, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C Mater Biol Appl. 2018; 89:194-204. [ DOI:10.1016/j.msec.2018.04.006] 53. Xiao Y, Hu X, Jiang P, Qi Z. Thermos-responsive hydrogel system encapsulated engineered exosomes attenuate inflammation and oxidative damage in acute spinal cord injury. Front Bioeng Biotechnol. 2023 Aug 8; 11: 1216878. doi: 10.3389/fbioe.2023.1216878. PMID: 37614633; PMCID: PMC10442716. [ DOI:10.3389/fbioe.2023.1216878] 54. Afsartala, Zohreh, et al. "The Effect of Collagen and Fibrin Hydrogels Encapsulated with Adipose Tissue Mesenchymal Stem Cell-Derived Exosomes for Treatment of Spinal Cord Injury in a Rat Model." Iranian Journal of Biotechnology 21.3 (2023): 1-13. 55. Hou, Y., Liu, X., Guo, Y., Liu, D., Guo, P., and Liu, J. (2022). Strategies for effective neural circuit reconstruction after spinal cord injury: Use of stem cells and biomaterials. World Neurosurg. 161, 82-89. doi: 10.1016/j.wneu.2022.02.012 [ DOI:10.1016/j.wneu.2022.02.012] 56. Poongodi, R., Chen, Y. L., Yang, T. H., Huang, Y. H., Yang, K. D., Lin, H. C., et al. (2021). Bio-scaffolds as cell or exosome carriers for nerve injury repair. Int. J. Mol. Sci. 22 (24), 13347. doi:10.3390/ijms222413347 [ DOI:10.3390/ijms222413347]
|