[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 9, Issue 2 (Spring 2021) ::
Shefaye Khatam 2021, 9(2): 79-90 Back to browse issues page
The Effect of Royal Jelly on Depression and Anxiety in an Animal Model of Alzheimer's Disease
Maryam Azimpour, Mohammad Fathi *, Omid Dezfoulian
Department of Physical Education, Faculty of Humanities, Lorestan University, Khorramabad, Iran , Fathi.m@lu.ac.ir
Abstract:   (1538 Views)
Introduction: Royal Jelly (RJ) may exert positive effects on the function of the central nervous system. The aim of the present study was to investigate the effect of RJ on depression and anxiety in trimethyltin (TMT)-induced Alzheimer's disease (AD) model in rats. Materials and Methods: 32 rats were randomly divided into four groups; healthy (HC), AD, sham (SH), and RJ-treated. Forced Swimming Test (FST) for depression and Elevated Plus-Maze (EPM) for anxiety assessment were performed. Gene expression in the samples was measured using Real-Time PCR. Results: The dependent variable of immobility significantly increased in the AD group compared to the HC and RJ groups. Furthermore, the SH group has shown greater immobility than the HC group.  The antioxidant indexes of superoxide dismutase and glutathione peroxidase were significantly greater in the RJ group compared to the SH and AD groups. These indexes were also higher in the HC group than in the SH and AD groups. The RJ and HC groups exhibited a significant reduction in anxiety behaviours compared to the other groups. Conclusion: RJ supplementation has the ability to modulate the mood in the TMT model of AD in rats and may exert beneficial effects in the treatment of AD. 
Keywords: Depression, Anxiety, Swimming
Full-Text [PDF 1235 kb]   (449 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Neurorehabilation
References
1. Jiang W. Depression and Cardiovascular Disorders in the Elderly. Clinics in geriatric medicine. 2020; 36(2): 211-9. [DOI:10.1016/j.cger.2019.11.003]
2. Rector S, Stiritz S, Morley JE. Editorial: Sexuality, Aging, and Dementia. The journal of nutrition, health & aging. 2020; 24(4): 366-70. [DOI:10.1007/s12603-020-1345-0]
3. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer's & dementia. 2013; 9(1): 63-75. [DOI:10.1016/j.jalz.2012.11.007]
4. Lopez C, Sanchez JL, Martin J. [Exploratory analysis of the influence of cognitive reserve on the benefits of cognitive stimulation therapy in patients with sporadic late-onset Alzheimer's disease]. Revista de neurologia. 2020; 70(8): 271-81. [DOI:10.33588/rn.7008.2019420]
5. Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychological bulletin. 2014; 140(3): 774. [DOI:10.1037/a0035302]
6. Guest PC, Rahmoune H, Martins-de-Souza D. Proteomic Analysis of Rat Hippocampus for Studies of Cognition and Memory Loss with Aging. Methods in molecular biology (Clifton, NJ). 2020; 2138: 407-17. [DOI:10.1007/978-1-0716-0471-7_30]
7. Seymen CM, Cakir Gundogdu A, Bulut DI, Yilmaz Demirtas C, Elmas C. Royal jelly increased map-2 expression in hippocampal neurons of hypothyroid rats: an immunohistochemical study. Biotechnic & histochemistry : official publication of the Biological Stain Commission. 2020; 95(1): 46-54. [DOI:10.1080/10520295.2019.1632486]
8. Micheli L, Ceccarelli M, D'Andrea G, Tirone F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull. 2018; 143: 1-93-81. [DOI:10.1016/j.brainresbull.2018.09.002]
9. Bashi Abdolabadi H, Pilevar S, Saram AA. The Effect of Cognitive Rehabilitation on Cognitive Function, Memory, Depression, and Anxiety in Patients with Multiple Sclerosis. The Neuroscience Journal of Shefaye Khatam. 2016; 4(3): 28-40. [DOI:10.18869/acadpub.shefa.4.3.28]
10. Markadeh RA, Dehghani A. The Effectiveness of Group-Based Dialectic Behavioral Therapy on Depression and Perceived Stress of Female Students. Journal of Nursing Education (JNE). 2019; 7(6).
11. Zhong H, Rong J, Zhu C, Liang M, Li Y, Zhou R. Epigenetic modifications of GABAergic interneurons contributes to the deficits in adult hippocampus neurogenesis and depression-like behavior in prenatally stressed mice. The international journal of neuropsychopharmacology. 2020. [DOI:10.1093/ijnp/pyaa020]
12. Habtemariam S. Antioxidant and anti-inflammatory mechanisms of neuroprotection by ursolic acid: addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression. Oxidative medicine and cellular longevity. 2019. [DOI:10.1155/2019/8512048]
13. Miki T, Eguchi M, Kochi T, Akter S, Hu H, Kashino I, et al. Prospective study on the association between dietary non-enzymatic antioxidant capacity and depressive symptoms. Clinical nutrition ESPEN. 2020;36:91-8. [DOI:10.1016/j.clnesp.2020.01.010]
14. Tu C-H, MacDonald I, Chen Y-H. The Effects of Acupuncture on Glutamatergic Neurotransmission in Depression, Anxiety, Schizophrenia, and Alzheimer's Disease: A Review of the Literature. Frontiers in psychiatry. 2019; 10: 14. [DOI:10.3389/fpsyt.2019.00014]
15. Bhatti GK, Reddy AP, Reddy PH, Bhatti JS. Lifestyle Modifications and Nutritional Interventions in Aging-Associated Cognitive Decline and Alzheimer's Disease. Frontiers in aging neuroscience. 2019; 11: 369. [DOI:10.3389/fnagi.2019.00369]
16. Park SK, Kang JY, Kim JM, Yoo SK, Han HJ, Chung DH, et al. Fucoidan-Rich Substances from Ecklonia cava Improve Trimethyltin-Induced Cognitive Dysfunction via Down-Regulation of Amyloid beta Production/Tau Hyperphosphorylation. Marine drugs. 2019; 17(10). [DOI:10.3390/md17100591]
17. Lee S, Yang M, Kim J, Son Y, Kim J, Kang S, et al. Involvement of BDNF/ERK signaling in spontaneous recovery from trimethyltin-induced hippocampal neurotoxicity in mice. Brain research bulletin. 2016; 121: 48-58. [DOI:10.1016/j.brainresbull.2016.01.002]
18. Zhu HB, Ouyang GL, Lai YY, Zhong SQ. [Clinical analysis of sequelae of acute trimethyltin oxide poisoning]. Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases. 2019; 37(5): 376-9.
19. Kim J, Kim CY, Oh H, Ryu B, Kim U, Lee JM, et al. Trimethyltin chloride induces reactive oxygen species-mediated apoptosis in retinal cells during zebrafish eye development. The Science of the total environment. 2019; 653: 36-44. [DOI:10.1016/j.scitotenv.2018.10.317]
20. Hou J, Xue J, Wang Z, Li W. Ginsenoside Rg3 and Rh2 protect trimethyltin-induced neurotoxicity via prevention on neuronal apoptosis and neuroinflammation. Phytotherapy research : PTR. 2018; 32(12). [DOI:10.1002/ptr.6193]
21. Guardia de Souza EST, do Val de Paulo MEF, da Silva JRM, da Silva Alves A, Britto LRG, Xavier GF, et al. Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer's disease. Heliyon. 2020; 6(2): e03281. [DOI:10.1016/j.heliyon.2020.e03281]
22. e Silva TGdS, da Silva JRM, da Silva Alves A, Britto LRG, Xavier GF, Sandoval MRL. Oral treatment with royal jelly improves memory and presents neuroprotective effects on icv-STZ rat model of sporadic Alzheimer's disease. Heliyon. 2020; 6(2): e03281. [DOI:10.1016/j.heliyon.2020.e03281]
23. Pan Y, Xu J, Jin P, Yang Q, Zhu K, You M, et al. Royal Jelly Ameliorates Behavioral Deficits, Cholinergic System Deficiency, and Autonomic Nervous Dysfunction in Ovariectomized Cholesterol-Fed Rabbits. Molecules (Basel, Switzerland). 2019; 24(6): 1149. [DOI:10.3390/molecules24061149]
24. You M, Pan Y, Liu Y, Chen Y, Wu Y, Si J, et al. Royal Jelly Alleviates Cognitive Deficits and beta-Amyloid Accumulation in APP/PS1 Mouse Model Via Activation of the cAMP/PKA/CREB/BDNF Pathway and Inhibition of Neuronal Apoptosis. Frontiers in aging neuroscience. 2018; 10: 428. [DOI:10.3389/fnagi.2018.00428]
25. Bazyar Y, Rafiei S, Hosseini A, Edalatmanesh MA. Effect of endurance exercise training and gallic acid on tumor necrosis factor-α in an animal model of alzheimer's disease. 2015. [DOI:10.18869/acadpub.shefa.3.3.21]
26. Moghadas M, Edalatmanesh MA. The lithium chloride effect on anxiety, exploratory activity, and brain derived neurotrophic factor levels of the hippocampus in a rat model of TMT Intoxication. The Neuroscience Journal of Shefaye Khatam. 2015; 3(2): 1-10. [DOI:10.18869/acadpub.shefa.3.2.1]
27. Arzi A, Houshmand G, Goudarzi M, Khadem Haghighian H, Rashidi Nooshabadi M. Comparison of the analgesic effects of royal jelly with morphine and aspirin in rats using the formalin. Journal of Babol University of Medical Sciences. 2015; 17(2): 50-6.
28. Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology. 2005; 177(3): 245-55. [DOI:10.1007/s00213-004-2048-7]
29. Sadock BJ, Sadock VA, Ruiz P. Comprehensive textbook of psychiatry: lippincott Williams & wilkins Philadelphia, PA; 2000.
30. Wang Y, Kim SC, Wu T, Jiao Y, Jin H, Hyo Lee B, et al. Isoliquiritigenin Attenuates Anxiety-Like Behavior and Locomotor Sensitization in Rats after Repeated Exposure to Nicotine. Evidence-based complementary and alternative medicine : eCAM. 2020; 969. [DOI:10.1155/2020/9692321]
31. Remus JL, Dantzer R. Inflammation models of depression in rodents: relevance to psychotropic drug discovery. International Journal of Neuropsychopharmacology. 2016; 19(9). [DOI:10.1093/ijnp/pyw028]
32. Mignini F, Nasuti C, Artico M, Giovannetti F, Fabrizi C, Fumagalli L, et al. Effects and trimethyltin on hippocampal dopaminergic markers and cognitive behaviour. International journal of immunopathology and pharmacology. 2012;25(4):1107-19. [DOI:10.1177/039463201202500428]
33. Harry GJ, d'Hellencourt CL. Dentate gyrus: alterations that occur with hippocampal injury. Neurotoxicology. 2003; 24(3): 343-56. [DOI:10.1016/S0161-813X(03)00039-1]
34. Xiang D, Xiao J, Sun S, Fu L, Yao L, Wang G, et al. Differential Regulation of DNA Methylation at the CRMP2 Promoter Region Between the Hippocampus and Prefrontal Cortex in a CUMS Depression Model. Front Psychiatry. 2020; 11: 141. [DOI:10.3389/fpsyt.2020.00141]
35. Nemoda Z, Massart R, Suderman M, Hallett M, Li T, Coote M, et al. Maternal depression is associated with DNA methylation changes in cord blood T lymphocytes and adult hippocampi. Translational psychiatry. 2015; 5(4): e545-e. [DOI:10.1038/tp.2015.32]
36. Toczewska J, Konopka T. Activity of enzymatic antioxidants in periodontitis: A systematic overview of the literature. Dental and medical problems. 2019; 56(4): 419-26. [DOI:10.17219/dmp/112151]
37. Unsal V, Dalkiran T, Cicek M, Kolukcu E. The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review. Adv Pharm Bull. 2020; 10(2): 184-202. [DOI:10.34172/apb.2020.023]
38. Pan Y, Xu J, Jin P, Yang Q, Zhu K, You M, et al. Royal Jelly Ameliorates Behavioral Deficits, Cholinergic System Deficiency, and Autonomic Nervous Dysfunction in Ovariectomized Cholesterol-Fed Rabbits. Molecules (Basel, Switzerland). 2019; 24(6). [DOI:10.3390/molecules24061149]
39. Weiser MJ, Grimshaw V, Wynalda KM, Mohajeri MH, Butt CM. Long-Term Administration of Queen Bee Acid (QBA) to Rodents Reduces Anxiety-Like Behavior, Promotes Neuronal Health and Improves Body Composition. Nutrients. 2018; 10(1): 13. [DOI:10.3390/nu10010013]
40. Pyrzanowska J, Piechal A, Blecharz-Klin K, Joniec-Maciejak I, Graikou K, Chinou J, et al. Administration of Greek Royal Jelly produces fast response in neurotransmission of aged Wistar male rats. Journal of Pre-Clinical and Clinical Research. 2015; 9(2). [DOI:10.5604/18982395.1186497]
41. Notkola I-L, Sulkava R, Pekkanen J, Erkinjuntti T, Ehnholm C, Kivinen P, et al. Serum total cholesterol, apolipoprotein E {FC12} e4 allele, and Alzheimer's disease. Neuroepidemiology. 1998; 17(1): 14-20. [DOI:10.1159/000026149]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azimpour M, Fathi M, Dezfoulian O. The Effect of Royal Jelly on Depression and Anxiety in an Animal Model of Alzheimer's Disease. Shefaye Khatam. 2021; 9 (2) :79-90
URL: http://shefayekhatam.ir/article-1-2098-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 2 (Spring 2021) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 4410