[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..

..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 10، شماره 4 - ( پاييز 1401 ) ::
دوره 10 شماره 4 صفحات 112-104 برگشت به فهرست نسخه ها
مروری بر نقش عوامل نوروتروفیک و داروهای گیاهی در بازسازی اعصاب محیطی
اسداله اسدی ، مهدی تمجید ، زهرا پوروزیری ، آرش عبدالملکی*
گروه بیوانفورماتیک، دانشکده فناوری‌های نوین، دانشگاه محقق اردبیلی، نمین، ایران ، abdolmalekiarash1364@gmail.com
چکیده:   (1041 مشاهده)
مقدمه: سیستم عصبی محیطی دارای توانایی ذاتی برای بازسازی خود است و عوامل متعددی از جمله عوامل نوروتروفیک نقش مهمی در این فرآیند دارند. عوامل نوروتروفیک مولکول‌هایی هستند که بر سیستم عصبی محیطی تأثیر می‌گذارند و نقش حیاتی در محافظت از اعصاب، رشد و بازسازی دارند. در صدمات شدید ترمیم عصب داخلی چندان موثر نیست. درمان‌های فعلی نیز محدودیت‌ها و عوارض جانبی زیادی دارند.به نظر می‌رسد استفاده از برخی محرک‌های طبیعی و گیاهی عوارض جانبی کمتری دارد و بازسازی عصب محیطی را تسریع می‌کند. بنابراین توجه به نقش عوامل نوروتروفیک و بررسی اثرات درمانی محرک‌های طبیعی در بازسازی اعصاب محیطی حائز اهمیت است. نتیجه‌گیری: بنایراین عوامل نوروتروفیک می‌توانند نقش مهمی در ترمیم و حمایت از اعصاب محیطی داشته باشند. همچنین استفاده از برخی محرک‌های طبیعی به‌عنوان داروهای گیاهی به‌دلیل عوارض کمتر، محیط مناسبی را برای بازسازی اعصاب محیطی فراهم می‌کند.
واژه‌های کلیدی: عوامل نوروتروفیک، دارو، بازسازی، عصب محیطی
متن کامل [PDF 480 kb]   (1296 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: ترميم عصبي
فهرست منابع
1. Li L, Li Y, Fan Z, Wang X, Li Z, Wen J, et al. Ascorbic acid facilitates neural regeneration after sciatic nerve crush injury. Front Cell Neurosci. 2019; 13(9): 108-9. [DOI:10.3389/fncel.2019.00108]
2. Abdolmaleki A, Zahri S, Bayrami A. Rosuvastatin enhanced functional recovery after sciatic nerve injury in the rat. Eur J Pharmacol. 2020; 85(882): 173-260. [DOI:10.1016/j.ejphar.2020.173260]
3. Ghayour MB, Abdolmaleki A, Behnam- Rassouli M. The effect of Riluzole on functional recovery of locomotion in the rat sciatic nerve crush model. Eur J Trauma Emerg Surg. 2017; 43(5): 691-9. [DOI:10.1007/s00068-016-0691-4]
4. Soluki M, Mahmoudi F, Abdolmaleki A, Asadi A, Sabahi Namini A. Cerium oxide nanoparticles as a new neuroprotective agent to promote functional recovery in a rat model of sciatic nerve crush injury. Br J Neurosurg. 2020; 10(16): 1-6. [DOI:10.1080/02688697.2020.1864292]
5. Ghayour MB, Abdolmaleki A, Fereidoni M. Use of stem cells in the regeneration of peripheral nerve injuries: an overview. Neurosci J. 2015; 3(1): 84-98. [DOI:10.18869/acadpub.shefa.3.1.84]
6. Jia H, Wang Y, Chen J, Li JP, Han HQ, Tong XJ, et al. Combination of BMSCs‐laden acellular nerve xenografts transplantation and G‐CSF administration promotes sciatic nerve regeneration. Synapse. 2019; 73(7): 22-5. [DOI:10.1002/syn.22093]
7. Garcia- Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog Neurobiol. 2001; 63(1): 29-60. [DOI:10.1016/S0301-0082(00)00025-3]
8. Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury. Front Physiol. 2019; 10(5): 486. [DOI:10.3389/fphys.2019.00486]
9. Ghayour MB, Abdolmaleki A, Behnam-Rassouli M. The effect of memantine on functional recovery of the sciatic nerve crush injury in rats. Turk Neurosurg. 2017; 27(4): 641-7. [DOI:10.5137/1019-5149.JTN.16792-15.1]
10. Nazim Ghasemi. The effect of neurotrophic factors in the treatment of multiple sclerosis: a review study. J Gorgan Univ Med Sci. 2018; 20 (4): 30-9.
11. Hanif S, Muhammad P, Chesworth R, Rehman FU, Qian R-j, Zheng M, et al. Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacol Sin. 2020; 41(7): 936-53. [DOI:10.1038/s41401-020-0429-z]
12. Gallo A, Cuscino N, Contino F, Bulati M, Pampalone M, Amico G, Zito G, Carcione C, Centi C, Bertani A, Conaldi PG. Changes in the Transcriptome Profiles of Human Amnion- Derived Mesenchymal Stromal/Stem Cells Induced by Three-Dimensional Culture: A Potential Priming Strategy to Improve Their Properties. Int J Mol Sci. 2022; 23(2): 863-8. [DOI:10.3390/ijms23020863]
13. Nazari H, Tahmasbpoor E, Fallah Mohammadi Z, Mohammadpoor G, Rahimizadeh S. The Effect of 4 Weeks of Flaxseed Extract Supplementation on Serum Concentration of Brain-Derived Neurotrophic Factor and C- Reactive Protein. Qom Univ Med Sci J. 2017; 10(11): 9-16.
14. Tehranipour, Javad Mousavi, Bibi Zahra. Neuroprotective effect of alcoholic extract of cannabis leaf (Cannabis Sativa) on degeneration of spinal cord alpha motonurons after sciatic nerve injury in rats. J of Shahid Sadoughi Univ of Med Sci. 2019; 19 (3): 339-49.
15. Zeinali, single Baluch race, Turandokht, Roghani. The effect of oral administration of S-allylcysteine (active ingredient in old garlic extract) on the symptoms of multiple sclerosis in an experimental model. Qom Univ Med Sci J. 2020; 14 (10): 76-84. [DOI:10.52547/qums.14.10.76]
16. Tamjid M, Mahmoudi F, Abdolmaleki A, Mirzaee S. Preparation of omega-3 coated iron oxide nanoparticles and its effect on liver, renal and splenic function in rats: An experimental study. J Rafsanjan Univ Med Sci. 2021; 20 (8): 879-90. [DOI:10.52547/jrums.20.8.879]
17. Nocera G, Jacob C. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci. 2020; 77(20): 3977-89. [DOI:10.1007/s00018-020-03516-9]
18. Shin YK, Jang SY, Park JY, Park SY, Lee HJ, Suh DJ, et al. The Neuregulin‐Rac‐MKK7 pathway regulates antagonistic c‐jun/Krox20 expression in Schwann cell dedifferentiation. Glia. 2013; 61(6): 892-904. [DOI:10.1002/glia.22482]
19. Schmid D, Zeis T, Schaeren-Wiemers N. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells. ASN neuro. 2014; 6(3): 31-9. [DOI:10.1042/AN20130031]
20. Gomez-Sanchez JA, Pilch KS, van der Lans M, Fazal SV, Benito C, Wagstaff LJ, et al. After nerve injury, lineage tracing shows that myelin and Remak Schwann cells elongate extensively and branch to form repair Schwann cells, which shorten radically on remyelination. J Neurosci. 2017; 37(37): 9086-99. [DOI:10.1523/JNEUROSCI.1453-17.2017]
21. Jessen KR, Arthur‐Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia. 2019; 67(3): 421-37. [DOI:10.1002/glia.23532]
22. Vaquie A, Sauvain A, Duman M, Nocera G, Egger B, Meyenhofer F, et al. Injured axons instruct Schwann cells to build constricting actin spheres to accelerate axonal disintegration. Cell Rep. 2019; 27(11): 3152-66. [DOI:10.1016/j.celrep.2019.05.060]
23. Wong KM, Babetto E, Beirowski B. Axon degeneration: make the Schwann cell great again. Neural Regen Res. 2017; 12(4): 51-8. [DOI:10.4103/1673-5374.205000]
24. Lutz AB, Chung W-S, Sloan SA, Carson GA, Zhou L, Lovelett E, et al. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. PNAS. 2017; 114(38): 80-9. [DOI:10.1073/pnas.1710566114]
25. Klein D, Martini R. Myelin and macrophages in the PNS: An intimate relationship in trauma and disease. Brain Res. 2016; 16(41): 130-8. [DOI:10.1016/j.brainres.2015.11.033]
26. Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015; 42(3): 419-30. [DOI:10.1016/j.immuni.2015.02.005]
27. Razavi S, Nazem G, Mardani M, Esfandiari E, Salehi H, Esfahani SHZ. Neurotrophic factors and their effects in the treatment of multiple sclerosis. Adv Biomed Res. 2015; 3(4): 32-9. [DOI:10.4103/2277-9175.151570]
28. Keefe KM, Sheikh IS, Smith GM. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int J Mol Sci. 2017; 18(3): 54-8. [DOI:10.3390/ijms18030548]
29. Hodgetts S, Harvey A. Neurotrophic factors used to treat spinal cord injury. Vitam Horm. 2017; 10(4): 405-57. [DOI:10.1016/bs.vh.2016.11.007]
30. Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology. 2017; 151(1): 1-15. [DOI:10.1111/imm.12717]
31. Ghayour MB, Abdolmaleki A, Rassouli MB. Neuroprotective effect of Lovastatin on motor deficit induced by sciatic nerve crush in the rat. Eur J Pharmacol. 2017; 812: 121-7. [DOI:10.1016/j.ejphar.2017.07.018]
32. Bondarenko O, Saarma M. Neurotrophic factors in Parkinson's disease: clinical trials, open challenges and nanoparticle-mediated delivery to the brain. Front Cell Neurosci. 2021; 1(15): 4-9. [DOI:10.3389/fncel.2021.682597]
33. Popova N, Ilchibaeva T, Naumenko V. Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. Biochem. 2017; 82(3): 308-17. [DOI:10.1134/S0006297917030099]
34. Grondin R, Littrell OM, Zhang Z, Ai Y, Huettl P, Pomerleau F, et al. GDNF revisited: a novel mammalian cell-derived variant form of GDNF increases dopamine turnover and improves brain biodistribution. Neuropharmacology. 2019; 14(7): 28-36. [DOI:10.1016/j.neuropharm.2018.05.014]
35. Ibáñez CF, Andressoo J-O. Biology of GDNF and its receptors-relevance for disorders of the central nervous system. Neurobiol Dis. 2017; 9(7): 80-9. [DOI:10.1016/j.nbd.2016.01.021]
36. Nicola NA, Babon JJ. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015; 26(5): 533-44. [DOI:10.1016/j.cytogfr.2015.07.001]
37. Pasquin S, Sharma M, Gauchat J-F. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev. 2015; 26(5): 507-15. [DOI:10.1016/j.cytogfr.2015.07.007]
38. Almeida FB, Barros HMT, Pinna G. Neurosteroids and neurotrophic factors: what is their promise as biomarkers for major depression and PTSD?. Int J Mol Sci. 2021; 22(4): 17-58. [DOI:10.3390/ijms22041758]
39. Requena-Ocaña N, Araos P, Flores M, García-Marchena N, Silva-Peña D, Aranda J, et al. Evaluation of neurotrophic factors and education level as predictors of cognitive decline in alcohol use disorder. Sci Rep. 2021; 11(1): 1-14. [DOI:10.1038/s41598-021-95131-2]
40. Amidfar M, Réus GZ, Moura ABd, Quevedo J, Kim Y-K. The role of neurotrophic factors in pathophysiology of major depressive disorder. MDD. 2021; 2(7): 57-72. [DOI:10.1007/978-981-33-6044-0_14]
41. Adelantado-Renau M, Esteban-Cornejo I, Mora-Gonzalez J, Plaza-Florido A, Rodriguez-Ayllon M, Maldonado J, et al. Neurotrophic Factors and Brain Health in Children with Overweight and Obesity: The Role of Cardiorespiratory Fitness: Neurotrophic factors, brain health, and fitness. Eur J Sport Sci. 2022; 22(6): 1-33. [DOI:10.1080/17461391.2022.2044912]
42. Alikhanzadeh Mahboubeh, Tehranipour Maryam, Khayatzadeh Jina. Evaluation of neuroprotective effect of alcoholic extract of Achillea Biebersteinii yarrow leaf on anterior horn alpha neurons of the spinal cord after sciatic nerve compression in rats. Qom Univ Med Sci J. 2019; 21(3): 1-5.
43. Naderi Allaf, Tehranipour, Shahrokhabadi race. Investigation of the mechanism of restorative effect of hydroalcoholic extract of Lavandula officianalis by evaluating the expression of NT-3 gene after sciatic nerve compression in rats. J of Arak Univ of Med Sci. 2017; 20(2): 100-12.
44. Razavi Maryam, Tehranipour Maryam, Khayatzadeh Jina. Evaluation of the effects of aqueous extract of sage leaf on repair of anterior horn alpha neurons of the spinal cord after sciatic nerve compression in rats. J Shahrekord Univ Med Sci. 2015; 18 (3): 10-17.
45. Arzanipur Y, Abdolmaleki A, Asadi A, Zahri S. Synthesis, Characterization, Evaluation of Supportive Properties, and Neuroprotective Effects of Cerium Oxide Nanoparticles as a Candidate for Neural Tissue Engineering. Shefaye Khatam. 2021; 9 (3): 55-63. [DOI:10.52547/shefa.9.3.55]
46. Azimpour M, Mahmoudi F, Abdolmaleki A, Bayrami A. Thyroxine Accelerates Functional Recovery in a Rat Model of Sciatic Nerve Crush. Turk Neur. 2021; 11(3) : 5-6. [DOI:10.5137/1019-5149.JTN.34966-21.4]
47. Abdolmaleki A, Zahri S, Bayrami A. Rosuvastatin enhanced functional recovery after sciatic nerve injury in the rat. Eur Jour of Pharma. 2020; 58(82): 196-89. [DOI:10.1016/j.ejphar.2020.173260]
48. Ghayour MB, Abdolmaleki A, Behnam-Rassouli M. The effect of memantine on functional recovery of the sciatic nerve crush injury in rats. Turk Neur. 2017; 27(4):641-7. [DOI:10.5137/1019-5149.JTN.16792-15.1]
49. Gholami A, Asadi A, Abdolmaleki A, Zahri S. Evaluating the Efficiency of Selenium Nanoparticles in the Production of Decellularized Neural Scaffold and the Ability to Preserve Stem Cells Cultured on Them: A Laboratory Study. JRUMS. 2021; 20 (7): 733-46 [DOI:10.52547/jrums.20.7.733]
50. Asadi A, Abdolmaleki A. New Drugs and their Mechanism in the Treatment of Epilepsy. Neurosci J Shefaye Khatam. 2021; 10 (2): 700-46.
51. Arzanipur Y, Abdolmaleki A, Asadi A, Zahri S. Synthesis, Characterization, Evaluation of Supportive Properties, and Neuroprotective Effects of Cerium Oxide Nanoparticles as a Candidate for Neural Tissue Engineering. Neurosci J Shefaye Khatam. 2021; 9(3): 55-63. [DOI:10.52547/shefa.9.3.55]
52. Abdolmaleki A, Asadi A, Taghizadeh Momen L, Parsi Pilerood S. The Role of Neural Tissue Engineering in the Repair of Nerve Lesions. Neurosci J Shefaye Khatam. 2020; 8(3): 80-96. [DOI:10.29252/shefa.8.3.80]
53. Azizishalbaf S, Asadi A, Abdolmaleki A. Analysis of Molecular Interactions Using the Thermophoresis Method and its Applications in Neuroscience and Biological Processes. Neurosci J Shefaye Khatam. 2019; 7(3): 91-101. [DOI:10.29252/shefa.7.3.91]
54. Ghayour MB, Abdolmaleki A, Fereidoni M. Use of stem cells in the regeneration of peripheral nerve injuries: an overview. Neurosci J Shefaye Khatam. 2015; 3(1): 84-98. [DOI:10.18869/acadpub.shefa.3.1.84]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadi A, Tamjid M, Pourvaziri Z, Abdolmaleki A. A Review of the Role of Neurotrophic Factors and Herbal Medicines on Peripheral Nerve Regeneration. Shefaye Khatam 2022; 10 (4) :104-112
URL: http://shefayekhatam.ir/article-1-2309-fa.html

اسدی اسداله، تمجید مهدی، پوروزیری زهرا، عبدالملکی آرش. مروری بر نقش عوامل نوروتروفیک و داروهای گیاهی در بازسازی اعصاب محیطی. مجله علوم اعصاب شفای خاتم. 1401; 10 (4) :104-112

URL: http://shefayekhatam.ir/article-1-2309-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 4 - ( پاييز 1401 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.07 seconds with 52 queries by YEKTAWEB 4645