[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Site Facilities::
Contact us::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Copyright Policies




Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

:: Volume 11, Issue 2 (Spring 2023) ::
Shefaye Khatam 2023, 11(2): 93-101 Back to browse issues page
Neuroprotective Effects of Sertoli Cells in Movement Disorders
Zahra Naseri , Milad Soluki , Fariba Mahmoudi *
Department of Biology, Faculty of Science, Mohaghegh Ardabili University, Ardabil, Iran , f.mahmoudi@uma.ac.ir
Abstract:   (1014 Views)
Introduction: As a specialized organ consisting of complex tubules with different functional parts, the mammalian testis has evolved specifically to produce sperm and male sex hormones. Each of these functional parts consists of specialized cells whose functional units, the seminiferous tubules, are located within a network of loose connective tissue and interstitial cells. In seminiferous tubules, the epithelium is compartmented due to the presence of unique somatic cells called Sertoli cells. These cells, which contain cytoplasmic bundles, are essential for testicular formation and spermatogenesis and surround the spermatogonia all the way to the central lumen of the fallopian tubes. Many factors are synthesized and secreted by these cells, including proteins, growth factors, anti-inflammatory cytokines, prostaglandins, and key enzymes. Sertoli cells have a high therapeutic potential in the treatment of neurological diseases due to their immunity and resistance to immune system reactions, and secretion of nutritional and anti-inflammatory agents. These cells outside the testis have the ability to provide immune protection for connective tissues, increase cell proliferation and neuronal differentiation, and survive for long periods that are non-toxic to the central nervous system if transplanted into the brain and therefore are regarded as a good cellular source for transplantation. Conclusion: Cell transplantation, nowadays, has been introduced as a promising way to cure debilitating neurological diseases. In this review study, the role of Sertoli cells in the treatment of movement disorders of the central nervous system is discussed.
Keywords: Sertoli Cells, Nervous System, Movement Disorders
Full-Text [PDF 631 kb]   (599 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Neurorehabilation
1. Ravel C, Jaillard S. La Cellule de Sertoli [The Sertoli cell]. Morphologie 2011; 95(311): 151-8. [DOI:10.1016/j.morpho.2011.07.118]
2. Griswold MD. The Central Role of Sertoli Cells in Spermatogenesis. Semin Cell Dev Biol 1998; 9(4): 411-6. [DOI:10.1006/scdb.1998.0203]
3. Milanizadeh S, Aliaghaei A, Bigdeli MR. Neuroprotective Effect of 4T1 and Sertoli Cells CoTransplantation in Animal Model of Brain Ischemia. International Journal of Basic Science in Medicine 2018; 3(3): 133-9. [DOI:10.15171/ijbsm.2018.24]
4. Oliveira P, Alves M. Sertoli Cell Metabolism and Spermatogenesis. Springer International Publishing 2015; 34-35. [DOI:10.1007/978-3-319-19791-3]
5. Jégou B. The Sertoli Cell. Baillieres Clin Endocrinol Metab 1992; 6(2): 273-311. [DOI:10.1016/S0950-351X(05)80151-X]
6. Filippini A, Russo MA, Palombi F, Bertalot G, De Cesaris P, Stefanini M, et al. Modulation of Phagocytic Activity in Cultured Sertoli Cells. Gamete Res. 1989; 23(4): 367-75. [DOI:10.1002/mrd.1120230402]
7. Luca G, Arato I, Sorci G, Cameron DF, Hansen BC, Baroni T, et al. Sertoli Cells For Cell Transplantation: Pre-clinical Studies and Future Perspectives. Andrology 2018; 6(3): 385-95. [DOI:10.1111/andr.12484]
8. Wei Y, Gao Q, Niu P, Xu K, Qiu Y, Hu Y, et al. Integrative Proteomic and Phosphoproteomic Profiling of Testis from Wip1 Phosphatase-Knockout Mice: Insights into Mechanisms of Reduced Fertility. Mol Cell Proteomics 2019; 18 (2): 216-30. [DOI:10.1074/mcp.RA117.000479]
9. Weinbauer GF, Luetjens CM, Simoni M, Nieschlag E. Physiology of Testicular Function. In: Nieschlag E, Behre HM, Nieschlag S, editors. Andrology: Male Reproductive Health and Dysfunction. Berlin: Springer Science & Business Media 2010; 11-59. [DOI:10.1007/978-3-540-78355-8_2]
10. Mital P, Kaur G, Dufour J. M. Immunoprotective Sertoli Cells: Making Allogeneic and Xenogeneic Transplantation Feasible. Reproduction 2009; 139(3): 495-504. [DOI:10.1530/REP-09-0384]
11. Rato L, Socorro S, Cavaco JE, Oliveira PF. Tubular Fluid Secretion in the Seminiferous Epithelium: Ion Transporters and Aquaporins in Sertoli Cells. J Membr Biol 2010; 236(2): 215-24. [DOI:10.1007/s00232-010-9294-x]
12. Salem M, Mirzapour T, Bayrami A, Movahedin M. Differentiation and Apoptosis in Mammalian Germ Cells. Pathobiology Research 2019; 22 (1): 51-61. [DOI:10.1111/and.13229]
13. Lui WY, Lee WM, Cheng CY. TGF-betas: Their Role in Testicular Function and Sertoli Cell Tight Junction Dynamics. Int J Androl 2003; 26(3): 147-60. [DOI:10.1046/j.1365-2605.2003.00410.x]
14. Huleihel M, Zeyse D, Lunenfeld E, Zeyse M, Mazor M. Induction of Transferrin Secretion in Murine Sertoli Cells by FSH and IL-1: the Possibility of Different Mechanism(s) of Regulation. Am J Reprod Immunol 2002; 47(2): 112-7. [DOI:10.1034/j.1600-0897.2002.0o054.x]
15. Airaksinen MS, Saarma M. The GDNF Family: Signalling, Biological Functions and Therapeutic Value. Nat Rev Neurosci 2002; 3 (5): 383-94. [DOI:10.1038/nrn812]
16. Barroso-Chinea P, Cruz-Muros I, Aymerich MS, Rodríguez-Díaz M, Afonso-Oramas D, Lanciego JL, et al. Striatal Expression of GDNF and Differential Vulnerability of Midbrain Dopaminergic Cells. Eur J Neurosci 2005; 21(7): 1815-27. [DOI:10.1111/j.1460-9568.2005.04024.x]
17. Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA, et al. Mesencephalic Dopaminergic Neurons Protected by GDNF from Axotomy-Induced Degeneration in the Adult Brain. Nature 1995; 373(6512): 339-41. [DOI:10.1038/373339a0]
18. Parekh PA, Garcia TX, Hofmann MC. Regulation of GDNF Expression in Sertoli Cells. Reproduction 2019; 157(3): R95-R107. [DOI:10.1530/REP-18-0239]
19. Oatley JM, Avarbock MR, Brinster RL. Glial Cell Line-derived Neurotrophic Factor Regulation of Genes Essential for Self-renewal of Mouse Spermatogonial Stem Cells is Dependent on Src Family Kinase Signaling. J Biol Chem 2007; 282(35): 25842-51. [DOI:10.1074/jbc.M703474200]
20. Carnicella S, Ron D. GDNF--a Potential Target to Treat Addiction. Pharmacol Ther 2009; 122(1): 9-18. [DOI:10.1016/j.pharmthera.2008.12.001]
21. Turner, N., & Grose, R. Fibroblast Growth Factor Signalling: from Development to Cancer. Nature Reviews Cancer 2010; 10(2): 116-29. [DOI:10.1038/nrc2780]
22. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth Factors and Cytokines in Wound Healing. Wound Repair Regen 2008; 16(5): 585-601. [DOI:10.1111/j.1524-475X.2008.00410.x]
23. Liu Y, Liu Y, Deng J, Li W, Nie X. Fibroblast Growth Factor in Diabetic Foot Ulcer: Progress and Therapeutic Prospects. Front Endocrinol (Lausanne) 2021; 12: 744868. [DOI:10.3389/fendo.2021.744868]
24. Penn JW, Grobbelaar AO, Rolfe KJ. The Role of the TGF-β Family in Wound Healing, Burns and Scarring: a Review. Int J Burns Trauma 2012; 2(1): 18-28.
25. Khezri Sh., Rezazadeh Valoujerdi M., Sepehri H., Baharvand H. The Effect of Basic Fibroblast Growth Factor on Differentiation of Mouse Embryonic Stem Cells into Cardiomyocytes. Cell Journal (YAKHTEH) 2005; 7(27): 172-177. (Persian).
26. Willing AE, Cameron DF, Sanberg PR. Sertoli Cell Transplants: Their Use in the Treatment of Neurodegenerative Disease. Mol Med Today 1998; 4(11): 471-7. [DOI:10.1016/S1357-4310(98)01355-0]
27. Macpherson ML, Simmen RC, Simmen FA, Hernandez J, Sheerin BR, Varner DD, Loomis P, et al. Insulin-like Growth Factor-I and Insulin-like Growth Factor Binding Protein-2 and -5 in Equine Seminal Plasma: Association with Sperm Characteristics and Fertility. Biol Reprod 2002; 67(2): 648-54. [DOI:10.1095/biolreprod67.2.648]
28. Rotwein P, Pollock KM, Didier DK, Krivi GG. Organization and Sequence of the Human Insulin-like Growth Factor I Gene. Alternative RNA Processing Produces Two Insulin-like Growth Factor I Precursor Peptides. J Biol Chem 1986; 261(11): 4828-32. [DOI:10.1016/S0021-9258(19)89179-2]
29. Clemmons DR. Involvement of Insulin-like Growth Factor-I in the Control of Glucose Homeostasis. Curr Opin Pharmacol 2006; 6(6): 620-5. [DOI:10.1016/j.coph.2006.08.006]
30. Annunziata M, Granata R, Ghigo E. The IGF System. Acta Diabetol 2011; 48(1): 1-9. [DOI:10.1007/s00592-010-0227-z]
31. Itoh, N., Nanbu, A., Tachiki, H., Akagashi, K., Nitta, T., Mikuma, et al. Restoration of Testicular Transferring Insulin-Likegrowth Factor-1 (IGF-1), and Spermatogenesis by Exogenously Administered Purified FSH and Testosterone in Medically Hypophysectomized Rats. Archives of Andrology 1994; 33(3): 169-77. [DOI:10.3109/01485019408987821]
32. Loftis JM. Sertoli Cell Therapy: a Novel Possible Treatment Strategy for Treatment-resistant Major Depressive Disorder. Med Hypotheses 2011; 77(1): 35-42. [DOI:10.1016/j.mehy.2011.03.017]
33. Antony PM, Diederich NJ, Krüger R, Balling R. The Hallmarks of Parkinson's Disease. FEBS J 2013; 280(23): 5981-93. [DOI:10.1111/febs.12335]
34. Tysnes OB, Storstein A. Epidemiology of Parkinson's Disease. J Neural Transm (Vienna) 2017; 124(8): 901-905. [DOI:10.1007/s00702-017-1686-y]
35. Jhao YT, Chiu CH, Chen CF, Chou TK, Lin YW, Ju YT, et al. The Effect of Sertoli Cells on Xenotransplantation and Allotransplantation of Ventral Mesencephalic Tissue in a Rat Model of Parkinson's Disease. Cells 2019; 8(11): 1420. [DOI:10.3390/cells8111420]
36. Walker FO. Huntington's Disease. Lancet 2007; 369(9557): 218-28. [DOI:10.1016/S0140-6736(07)60111-1]
37. Rodriguez AI, Willing AE, Saporta S, Cameron DF, Sanberg PR. Effects of Sertoli Cell Transplants in a 3-Nitropropionic Acid Model of Early Huntington's Disease: a Preliminary Study. Neurotox Res 2003; 5(6): 443-50. [DOI:10.1007/BF03033174]
38. Ashizawa T, Xia G. Ataxia. Continuum (Minneap Minn) 2016; 22(4 Movement Disorders): 1208-26. [DOI:10.1212/CON.0000000000000362]
39. Jones TM, Shaw JD, Sullivan K, Zesiewicz TA. Treatment of Cerebellar Ataxia. Neurodegener Dis Manag 2014; 4(5): 379-92. [DOI:10.2217/nmt.14.27]
40. Saeidikhoo S, Ezi S, Khatmi A, Aghajanpour F, Soltani R, Abdollahifar MA, et al. Effect of Sertoli Cell Transplantation on Reducing Neuroinflammation-Induced Necroptosis and Improving Motor Coordination in the Rat Model of Cerebellar Ataxia Induced by 3-Acetylpyridine. J Mol Neurosci 2020; 70(7): 1153-163. [DOI:10.1007/s12031-020-01522-x]
41. Aliaghaei A, Boroujeni ME, Ahmadi H, Bayat AH, Tavirani MR, Abdollahifar MA, et al. Dental Pulp Stem Cell Transplantation Ameliorates Motor Function and Prevents Cerebellar Atrophy in Rat Model of Cerebellar Ataxia. Cell Tissue Res 2019; 376(2): 179-87. [DOI:10.1007/s00441-018-02980-x]
42. Lin Y, Devin A, Rodriguez Y, Liu ZG. Cleavage of the Death Domain Kinase RIP by Caspase-8 Prompts TNF-induced Apoptosis. Genes Dev 1999; 13(19): 2514-26. [DOI:10.1101/gad.13.19.2514]
43. Yiu EM, Kornberg AJ. Duchenne Muscular Dystrophy. J Paediatr Child Health 2015; 51(8): 759-64. [DOI:10.1111/jpc.12868]
44. Blake DJ, Weir A, Newey SE, Davies KE. Function and Genetics of Dystrophin and Dystrophin-related Proteins in Muscle. Physiol Rev 2002; 82(2): 291-329. [DOI:10.1152/physrev.00028.2001]
45. Chiappalupi S, Luca G, Mancuso F, Madaro L, Fallarino F, Nicoletti C, et al. Intraperitoneal Injection of Microencapsulated Sertoli Cells Restores Muscle Morphology and Performance in Dystrophic Mice. Biomaterials 2016; 75: 313-26. [DOI:10.1016/j.biomaterials.2015.10.029]
46. Salvadori L, Chiappalupi S, Arato I, et al. Sertoli Cells Improve Myogenic Differentiation, Reduce Fibrogenic Markers, and Induce Utrophin Expression in Human DMD Myoblasts. Biomolecules 2021; 11(10): 1504. [DOI:10.3390/biom11101504]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naseri Z, soluki M, Mahmoudi F. Neuroprotective Effects of Sertoli Cells in Movement Disorders. Shefaye Khatam 2023; 11 (2) :93-101
URL: http://shefayekhatam.ir/article-1-2358-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 11, Issue 2 (Spring 2023) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 44 queries by YEKTAWEB 4657