[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 7, Issue 3 (Summer 2019) ::
Shefaye Khatam 2019, 7(3): 91-101 Back to browse issues page
Analysis of Molecular Interactions Using the Thermophoresis Method and its Applications in Neuroscience and Biological Processes
Sara Azizishalbaf , Asadollah Asadi * , Arash Abdolmaleki
Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabili, Iran , asad.asady@gmail.com
Abstract:   (4975 Views)
Introduction: Molecular interactions play an important role in the phenomenon and biological processes. In fact, any cellular biological process ranged from genetic replication to the production of various proteins to the transmission of neurological, hormonal, membrane involves collections of molecular interactions that occur continuously. Interference in each of these processes at every stage of molecular interaction may be caused by various diseases. Therefore, their careful study can improve our understand of biological phenomena and lead to the emergence of new methods for the treatment of many diseases, in particular, the diseases of the nervous system. For this purpose, various biophysical and biochemical methods have been developed. Among them, infrared laser-based methods are very useful and important. Thermophoresis is one of these methods, which has been considered in recent years by medical, pharmaceutical, neuroscience, regeneration and biology scientists. This method is based on the direct movement of molecules in a temperature slope. This type of movement greatly depends on the biophysical properties of the molecule, including size, load, and solvent layer. Micro-scale modifications in this specification can affect the properties of the molecule under the influence of temperature. Conclusion: Thermophoresis is an easy, accurate, and fast method for analyzing the behavior of molecules. For this purpose, in the present study, we discussed the various theoretical and practical details as well as the various advantages and disadvantages of measuring the tendency of small molecules, such as ions and biochemical molecules.
Keywords: Molecular Biology, Biological Phenomena, Nervous System Diseases
Full-Text [PDF 1005 kb]   (4950 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Fekri R, Salehi M, Asadi A, Kubicki M. Spectroscopic studies, structural characterization and electrochemical studies of two cobalt (III) complexes with tridentate hydrazone Schiff base ligands: Evaluation of antibacterial activities, DNA‐binding, BSA interaction and molecular docking. Applied Organometallic Chemistry. 2018; 32(2): e4019. [DOI:10.1002/aoc.4019]
2. Miri V, Asadi A, Mansourizadeh F, Sagha M, Ghasem Golmohammadi M. Fabrication and evaluation of the morphology, biodegradability, and chemical characteristics of the nano-fibrous scaffold poly-l-lactic-acid (plla) and its application in neural tissue engineering. Journal of Urmia University of Medical Sciences. 2015; 25(11): 988-97.
3. Seidel SA, Wienken CJ, Geissler S, Jerabek‐Willemsen M, Duhr S, Reiter A, et al. Label‐free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. Angew Chem Int Ed Engl. 2012; 51(42): 10656-9. [DOI:10.1002/anie.201204268]
4. Bao J, Krylova SM, Wilson DJ, Reinstein O, Johnson PE, Krylov SN. Kinetic capillary electrophoresis with mass‐spectrometry detection (kce‐ms) facilitates label‐free solution‐based kinetic analysis of protein-small molecule binding. Chembiochem. 2011; 12(17): 2551-4. [DOI:10.1002/cbic.201100617]
5. Breitsprecher D, Schlinck N, Witte D, Duhr S, Baaske P, Schubert T. Aptamer binding studies using microscale thermophoresis. Methods Mol Biol. 2016; 1380: 99-111. [DOI:10.1007/978-1-4939-3197-2_8]
6. Piazza R. Thermophoresis: moving particles with thermal gradients. Soft Matter. 2008; 4(9): 1740-4 [DOI:10.1039/b805888c]
7. Entzian C, Schubert T. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST). Methods. 2016; 97: 27-34. [DOI:10.1016/j.ymeth.2015.08.023]
8. Duhr S, Braun D. Why molecules move along a temperature gradient. PNAS. 2006; 103(52): 19678-82. [DOI:10.1073/pnas.0603873103]
9. Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, et al. Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods. 2013; 59(3): 301-15. [DOI:10.1016/j.ymeth.2012.12.005]
10. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun. 2010; 1: 100. doi: 10.1038/ncomms1093. [DOI:10.1038/ncomms1093]
11. Xiong X, Coombs PJ, Martin SR, Liu J, Xiao H, McCauley JW, et al. Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature. 2013; 497(7449): 392-6. [DOI:10.1038/nature12144]
12. van den Bogaart G, Meyenberg K, Diederichsen U, Jahn R. Phosphatidylinositol 4, 5-bisphosphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold. J Biol Chem. 2012; 287(20): 16447-53. [DOI:10.1074/jbc.M112.343418]
13. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol. 2011; 9(4): 342-53. [DOI:10.1089/adt.2011.0380]
14. Mao Y, Yu L, Yang R, Qu L-b, Harrington PdB. A novel method for the study of molecular interaction by using microscale thermophoresis. Talanta. 2015; 132: 894-901. [DOI:10.1016/j.talanta.2014.09.038]
15. Asmari M, Ratih R, Alhazmi HA, El Deeb S. Thermophoresis for characterizing biomolecular interaction. Methods. 2018; 146: 107-19. [DOI:10.1016/j.ymeth.2018.02.003]
16. Bartoschik T, Maschberger M, Feoli A, André T, Baaske P, Duhr S, et al. Microscale thermophoresis in drug discovery. Applied Biophysics for Drug Discovery. 2017: p. 73-99. [DOI:10.1002/9781119099512.ch5]
17. Asadollahi E, Asadi A, Najafi F, Zahri S, Nasr SMH. Biological properties of pegylated PLA (PLA-PEG-PLA) and its capability for intracellular delivery of poor soluble peptide drug, gramicidin. International Journal of Drug Delivery. 2012; 4(2): 257-65.
18. Van Den Bogaart G, Thutupalli S, Risselada JH, Meyenberg K, Holt M, Riedel D, et al. Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nat Struct Mol Biol. 2011; 18(7): 805-12. [DOI:10.1038/nsmb.2061]
19. Pobbati AV, Stein A, Fasshauer D. N-to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science. 2006; 313(5787): 673-6. [DOI:10.1126/science.1129486]
20. Savolainen MH, Yan X, Myöhänen TT, Huttunen HJ. Prolyl oligopeptidase enhances α-synuclein dimerization via direct protein-protein interaction. J Biol Chem. 2015; 290(8): 5117-26. [DOI:10.1074/jbc.M114.592931]
21. Wolff M, Mittag JJ, Herling TW, De Genst E, Dobson CM, Knowles TP, et al. Quantitative thermophoretic study of disease-related protein aggregates. Scientific Reports. 2016; 6: 22829. [DOI:10.1038/srep22829]
22. Magnez R, Thiroux B, Taront S, Segaoula Z, Quesnel B, Thuru X. PD-1/PD-L1 binding studies using microscale thermophoresis. Scientific Reports. 2017; 7(1): 17623. [DOI:10.1038/s41598-017-17963-1]
23. NT020 AN, Breitsprecher D. Protein-DNA interaction analysis, dissection of complex interaction mechanisms by binding mode dependent thermophoresis signals - ssDNA binding to EcoSSB. NanoTemper Technologies.
24. Topf A, Franz P, Tsiavaliaris G. MicroScale thermophoresis (MST) for studying actin polymerization kinetics. Biotechniques. 2017; 63(4): 187-90. [DOI:10.2144/000114599]
25. Jerabek-Willemsen M, André T, Wanner R, Roth HM, Duhr S, Baaske P, et al. MicroScale thermophoresis: interaction analysis and beyond. J Mol Struct. 2014; 1077: 101-13. [DOI:10.1016/j.molstruc.2014.03.009]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azizishalbaf S, Asadi A, Abdolmaleki A. Analysis of Molecular Interactions Using the Thermophoresis Method and its Applications in Neuroscience and Biological Processes. Shefaye Khatam 2019; 7 (3) :91-101
URL: http://shefayekhatam.ir/article-1-1951-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 3 (Summer 2019) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.11 seconds with 45 queries by YEKTAWEB 4660