[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Site Facilities::
Contact us::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Copyright Policies




Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

:: Volume 8, Issue 1 (Winter - 2019) ::
Shefaye Khatam 2019, 8(1): 120-128 Back to browse issues page
Molecular Mechanisms of Parkinson's Disease
Zeinab Rezaee , Mohammad Marandi , Hojjatallah Alaei * , Fahimeh Esfarjani
Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran , alaei@med.mui.ac.ir
Abstract:   (4402 Views)
Introduction: Parkinson's disease is a common neurodegenerative disorder. In this disease, mitochondrial defects and oxidative stress lead to the enhancement of the free radicals and the death of dopamine neurons in the Sabstantia nigra. The clinical symptoms of this disease are including tremor, muscle stiffness, and inability to walk as well as cognition, memory and learning deficits. Aging increases the severity of Parkinson's disease. Conclusion: Any therapeutic strategy which can modulate antioxidant homeostasis and neuroprotection may increase the life expectancy and quality of life of patients with Parkinson's disease.
Keywords: Mitochondria, Oxidative Stress, Dopaminergic Neurons
Full-Text [PDF 397 kb]   (3062 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
1. Hosseini M Rajaei Z, Alaei H. Effects of crocin on rotational behavior, lipid peroxidation and nitrite levels in rat's brain striatum in an experimental model of parkinson's disease. Journal of Isfahan Medical School. 2015; 33(336): 780-91.
2. Tuon T, Valvassori SS, Dal Pont GC, Paganini CS, Pozzi BG, Luciano TF, et al. Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson's disease. Brain Res Bulletin. 2014; 108: 106-12. [DOI:10.1016/j.brainresbull.2014.09.006]
3. Goes A, Souza L, Del Fabbro L, De Gomes M, Boeira S, Jesse C. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. Neuroscience. 2014; 256: 61-71. [DOI:10.1016/j.neuroscience.2013.09.042]
4. Eshraghi-Jazi F, Alaei H, Azizi-Malekabadi H, Gharavi-Naini M, Pilehvarian A, Ciahmard Z. The effect of red grape juice and exercise, and their combination on parkinson's disease in rats. Avicenna J Phytomed. 2012; 2(2): 90-6.
5. Clark J, Silvaggi JM, Kiselak T, Zheng K, Clore EL, Dai Y, et al. Pgc-1α overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PloS One. 2012; 7(11): e48925. [DOI:10.1371/journal.pone.0048925]
6. Uppalapati D, Das NR, Gangwal RP, Damre MV, Sangamwar AT, Sharma SS. Neuroprotective Potential of peroxisome proliferator activated receptor-α agonist in cognitive impairment in parkinson's disease: behavioral, biochemical, and PBPK profile. PPAR Res. 2014; 2014. doi: 10.1155/2014/753587. [DOI:10.1155/2014/753587]
7. Rezaee Z, Marandi S-M, Ghaedi K, Esfarjani F. Molecular mechanisms of neurotrophins actions on diseases of nervous system. Genetics in the Third Millennium. 2015; 12(4): 3778-93.
8. Alaei H, Moloudi R, Sarkaki AR. Effects of treadmill running on mid-term memory and swim speed in the rat with morris water maze test. J Bodyw Mov Ther. 2008; 12(1): 72-5. [DOI:10.1016/j.jbmt.2007.05.004]
9. Toy WA, Petzinger GM, Leyshon BJ, Akopian GK, Walsh JP, Hoffman MV, et al. Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol Dis. 2014; 63: 201-9. [DOI:10.1016/j.nbd.2013.11.017]
10. Salgado S, Williams N, Kotian R, Salgado M. An evidence-based exercise regimen for patients with mild to moderate parkinson's disease. Brain Sci. 2013; 3(1): 87-100. [DOI:10.3390/brainsci3010087]
11. Cho H-S, Shin M-S, Song W, Jun T-W, Lim B-V, Kim Y-P, et al. Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson's rats. J Exerc Rehabil. 2013; 9(3): 354-61. [DOI:10.12965/jer.130048]
12. Archer T, Fredriksson A. Delayed exercise-induced functional and neurochemical partial restoration following MPTP. Neurotox Res. 2012; 21(2): 210-21. [DOI:10.1007/s12640-011-9261-z]
13. Archer T, Garcia D, Fredriksson A. Restoration of MPTP-induced deficits by exercise and Milmed® co-treatment. PeerJ. 2014; 2:e531. doi: 10.7717/peerj.531. [DOI:10.7717/peerj.531]
14. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003; 39(6): 889-909. [DOI:10.1016/S0896-6273(03)00568-3]
15. Murray DK, Sacheli MA, Eng JJ, Stoessl AJ. The effects of exercise on cognition in Parkinson's disease: a systematic review. Transl Neurodegener. 2014; 3(1): 5 . doi: 10.1186/2047-9158-3-5. [DOI:10.1186/2047-9158-3-5]
16. Cohen AD. Role of exercise and GDNF in an animal model of parkinson's disease: implications for neuroprotection. University of Pittsburgh. 2006.
17. Subramaniam SR, Chesselet M-F. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol. 2013; 106: 17-32. [DOI:10.1016/j.pneurobio.2013.04.004]
18. Bayod S DVJ, Canudas AM, Lalanza JF, Sanchez-Roige S, Camins A, Escorihuela RM, et al. Long-term treadmill exercise induces neuroprotective molecular changes in rat brain. J Appl Physiol. 2011; 111(5): 1380-90. [DOI:10.1152/japplphysiol.00425.2011]
19. Lau Y-S, Patki G, Das-Panja K, Le W-D, Ahmad SO. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson's disease with moderate neurodegeneration. Eur J Neurosci. 2011; 33(7): 1264-74. [DOI:10.1111/j.1460-9568.2011.07626.x]
20. Tuon T, Valvassori SS, Lopes-Borges J, Luciano T, Trom CB, Silva LA, et al. Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of Parkinson's disease. Neuroscience. 2012; 227: 305-312. [DOI:10.1016/j.neuroscience.2012.09.063]
21. Zhang P, Tian B. Metabolic syndrome: an important risk factor for parkinson's disease. Oxid Med Cell Longev. 2014; 2014. doi: 10.1155/2014/729194. [DOI:10.1155/2014/729194]
22. Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barceló-Coblijn GC, et al. Mitochondrial Lipid Abnormality and Electron Transport Chain Impairment in Mice Lacking α-Synuclein. Mol Biol Cell. 2005; 25(22): 10190-201. [DOI:10.1128/MCB.25.22.10190-10201.2005]
23. Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson's disease. BBA-Mol Basis Dis. 2010; 1802(1): 29-44. [DOI:10.1016/j.bbadis.2009.08.013]
24. Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008; 4(11): 600-9. [DOI:10.1038/ncpneuro0924]
25. Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003; 6(7): 736-42. [DOI:10.1038/nn1073]
26. Lin T-K, Liou C-W, Chen S-D, Chuang Y-C, Tiao M-M, Wang P-W, et al. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson's disease. Chang Gung Med J. 2009; 32(6): 589-99.
27. Perier C, Vila M. Mitochondrial biology and Parkinson's disease. Cold Spring Harb Perspect Med. 2012; 2(2): a009332. doi: 10.1101/cshperspect.a009332. [DOI:10.1101/cshperspect.a009332]
28. Fujita KA, Ostaszewski M, Matsuoka Y, Ghosh S, Glaab E, Trefois C, et al. Integrating pathways of Parkinson's disease in a molecular interaction map. Mol Neurobiol. 2014; 49(1): 88-102. [DOI:10.1007/s12035-013-8489-4]
29. 29 .LaHue SC, Comella CL, Tanner CM. The best medicine? the influence of physical activity and inactivity on Parkinson's disease. Mov Disorder. 2016; 31(10): 1444-54. [DOI:10.1002/mds.26728]
30. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012; 64(2): 238-58. [DOI:10.1124/pr.111.005108]
31. Landers MR, Kinney JW, Allen DN, Van Breukelen F. A comparison of voluntary and forced exercise in protecting against behavioral asymmetry in a juvenile hemiparkinsonian rat model. Behav Brain Res. 2013; 248(0): 121-8. [DOI:10.1016/j.bbr.2013.04.002]
32. Hou L, Chen W, Liu X, Qiao D, Zhou F-M. Exercise-induced neuroprotection of the nigrostriatal dopamine system in parkinson's disease. Front Aging Neurosci. 2017; 9(358). doi: 10.3389/fnagi.2017.00358. [DOI:10.3389/fnagi.2017.00358]
33. Ang E-T, Dawe GS, Wong PTH, Moochhala S, Ng Y-K. Alterations in spatial learning and memory after forced exercise. Brain Res. 2006; 1113(1): 186-93. [DOI:10.1016/j.brainres.2006.07.023]
34. Farshbaf MJ, Ghaedi K, Megraw TL, Curtiss J, Faradonbeh MS, Vaziri P, et al. Does PGC1α/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative disorders? Neuromolecular Med. 2016; 18(1): 1-15. [DOI:10.1007/s12017-015-8370-x]
35. Ciron C, Lengacher S, Dusonchet J, Aebischer P, Schneider B. Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function. Hum Mol Genet. 2012; 21(8): 1861-76. [DOI:10.1093/hmg/ddr618]
36. Kim Y, Triolo M, Hood DA. Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxid Med Cell Longev. 2017; 2017. [DOI:10.1155/2017/3165396]
37. Ottolini D, Calì T, Brini M. Etiology and pathogenesis of Parkinson's disease: role of mitochondrial pathology. Res Rep Biochem. 2013; 2013: 55-70. [DOI:10.2147/RRBC.S28413]
38. De Moura MB, Dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Molecular Mutagen. 2010; 51(5): 391-405. [DOI:10.1002/em.20575]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaee Z, Marandi M, Alaei H, Esfarjani F. Molecular Mechanisms of Parkinson's Disease. Shefaye Khatam 2019; 8 (1) :120-128
URL: http://shefayekhatam.ir/article-1-2039-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (Winter - 2019) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4652