[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Volume 8, Issue 1 (Winter - 2019) ::
Shefaye Khatam 2019, 8(1): 99-110 Back to browse issues page
Stem Cell-Based Stroke Treatment
Firoozeh Alavian , Sorayya Ghasemi *
Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran , sorayya.ghasemi@gmail.com
Abstract:   (5911 Views)
Introduction: Self-renewable and differentiable cells or stem cells are high-potential cells for the repair of tissue damages. Therefore, this is a promising approach to treat brain tissue damage following neurological disorders, such as stroke. Animal studies have shown the beneficial effects of various stem cells, including embryonic stem cells, inducible pluripotent stem cells, neural stem cells, and mesenchymal stem cells, in stroke recovery. The healing process may be due to replacement of damaged cells, neuroprotective effects, endogenous neurogenesis, angiogenesis, modulation of inflammation, and immune responses. Currently, stem cell-based methods have attracted the attention of many scientists and practitioners due to their curative effect on stroke. Conclusion: Although numerous clinical studies indicate that stem cells have high efficacy and safety in stroke treatment, some key issues should be considered. The positioning of these cells, survival, traceability, immunity, and cell transplantation protocols, such as the rate of usage and timing, are the challenges in stem cell-based treatment. Although the stem cell therapy is a potential new approach for treatment of stroke, further studies are still needed to improve the efficacy of this therapeutic method. This review article is a summary of current knowledge and concerns of the use of stem cells in post-stroke healing.
Keywords: Stroke, Stem Cells, Neuroprotection, Therapeutics
Full-Text [PDF 560 kb]   (4482 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
References
1. Alavian F, Hajizadeh S, Bigdeli MR, Javan M. Effect of intermittent normobaric hyperoxia and protein kinase C activity on blood-brain barrier permeability. Journal of Shahrekord University of Medical Sciences. 2012; 14(3): 40-50.
2. Behzad E, Zargaran A, Karimi M, Ghabaee M. P 37: Prescribing pepper for stroke treatment. Shefaye Khatam. 2017; 5(2): 68.
3. Alavian F, Hajizadeh S, Bigdeli MR, Javan M. The role of protein kinase C in ischemic tolerance induced by hyperoxia in rats with stroke. Excli Journal. 2012; 11: 188-97.
4. Alavian F, Hajizadeh S, Javan M, Mazloom R. Evaluation of ERK activity on Ischemic Tolerance-induced by Preconditioning with Intermittent Normobaric Hyperoxia in the Rat Model of Stroke. Arak Medical University Journal (AMUJ). 2017; 20(123): 41-53.
5. Alavian F, Hajizadeh S, Bigdeli MR, Bayat GR, Javan M. Evaluation of UCP 2 expression in the phenomenon of ischemic resistance induced by alternating normobaric hyperoxia in a rat model of stroke. Physiology and Pharmacology. 2012; 16(1): 54-61.
6. Alavian F, Hajizadeh S, Javan M, Bigdeli MR. Effects of preconditioning with intermittent normobaric hyperoxia on TNFR 1 and TNFR 2 expression in the rat brain. Physiology and Pharmacology. 2017; 21(2): 110-9.
7. Alavian F, Ghiasvand S. Protective effects of jujube extract against permeability of blood-brain barrier, and the activity of glutathione peroxidase and catalase in stroke model. Journal of Isfahan Medical School. 2018; 36(475): 379-85.
8. Alavian F. Hypothermia and stroke: pros and cons. Shefaye Khatam. 2019; 7(2): 83-98. [DOI:10.29252/shefa.7.2.83]
9. Khorrami MB, Forouzanfar F, Sadeghnia HR, Sahab Negah S. The role of cannabinoids in ischemia stroke. Shefaye Khatam. 2017; 5(2): 179.
10. Alavian F, Ghiasvand S. Neuroprotective effects of stachys lavandulifolia hydroalcoholic extract on size of cerebral ischemia, blood-brain barrier permeability and edema volume in rat stroke model. Journal of Arak University of Medical Sciences. 2019; 21(7): 92-101.
11. Kamandi N, Akhgari N, Sahab Negah S. Effect of glycoprotein iib/iiia inhibition on acute ischemic stroke injuries. Shefaye Khatam. 2017; 5(2): 180.
12. Molina CA. Reperfusion therapies for acute ischemic stroke: current pharmacological and mechanical approaches. Stroke. 2011; 1(1): 16-9. [DOI:10.1161/STROKEAHA.110.598763]
13. Hacke W, Donnan G, Fieschi C, Kaste M, Broderick JP, Brott T, et al. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 2004; 363(9411): 768-74. [DOI:10.1016/S0140-6736(04)15692-4]
14. Jeong H, Yim HW, Cho Y-s, Kim Y-I, Jeong S-N, Kim H-b, et al. Efficacy and safety of stem cell therapies for patients with stroke: a systematic review and single arm meta-analysis. International Journal of Stem Cells. 2014; 7(2): 63-9. [DOI:10.15283/ijsc.2014.7.2.63]
15. Sandu RE, Balseanu AT, Bogdan C, Slevin M, Petcu E, Popa-Wagner A. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy? Exp Gerontol. 2017; 94: 73-7. [DOI:10.1016/j.exger.2017.01.008]
16. Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 2009; 8(5): 491-500. [DOI:10.1016/S1474-4422(09)70061-4]
17. Alavian F, Hajizadeh S, Javan M, Bigdeli MR. Evaluation of Hif1Α expression in ischemic tolerance induced by intermittent normobaric hyperoxia in the rat model of stroke. Journal of Sabzevar University of Medical Sciences. 2012; 287-95.
18. Cramer SC, Koroshetz WJ, Finklestein SP. The case for modality-specific outcome measures in clinical trials of stroke recovery-promoting agents. Stroke. 2007; 38(4): 1393-5. [DOI:10.1161/01.STR.0000260087.67462.80]
19. Chan HH, Wathen CA, Ni M, Zhuo S. Stem cell therapies for ischemic stroke: current animal models, clinical trials and biomaterials. RSC Adv. 2017; 7(30): 18668-80. [DOI:10.1039/C7RA00336F]
20. Yamaguchi S, Kuroda S, Kobayashi H, Shichinohe H, Yano S, Hida K, et al. The effects of neuronal induction on gene expression profile in bone marrow stromal cells (BMSC)-a preliminary study using microarray analysis. Brain Research. 2006; 1087(1): 15-27. [DOI:10.1016/j.brainres.2006.02.127]
21. Zhang S-C, Wernig M, Duncan ID, Brustle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology. 2001; 19(12): 1129-33. [DOI:10.1038/nbt1201-1129]
22. Ying Q-L, Stavridis M, Griffiths D, Li M, Smith A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnology. 2003; 21(2): 183-6. [DOI:10.1038/nbt780]
23. Wei L, Cui L, Snider BJ, Rivkin M, Steven SY, Lee C-S, et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiology of Disease. 2005; 19(1-2): 183-93. [DOI:10.1016/j.nbd.2004.12.016]
24. Yanagisawa D, Qi M, Kim D-h, Kitamura Y, Inden M, Tsuchiya D, et al. Improvement of focal ischemia-induced rat dopaminergic dysfunction by striatal transplantation of mouse embryonic stem cells. Neuroscience Letters. 2006; 40791): 74-9. [DOI:10.1016/j.neulet.2006.08.007]
25. Tae-Hoon L, Yoon-Seok L. Transplantation of mouse embryonic stem cell after middle cerebral artery occlusion. Acta Cirurgica Brasileira. 2012; 27(4): 333-9. [DOI:10.1590/S0102-86502012000400009]
26. Hao L, Zou Z, Tian H, Zhang Y, Zhou H, Liu L. Stem cell-based therapies for ischemic stroke. BioMed Research International. 2014; 2014. [DOI:10.1155/2014/468748]
27. Yousuf Y, Amini-Nik S, Jeschke MG. Use of stem cells in acute and complex wounds. pancreas, kidney and skin regeneration. Pancreas, Kidney and Skin Regeneration. 2017; 195-226. [DOI:10.1007/978-3-319-55687-1_9]
28. Dixon KJ, Theus MH, Nelersa CM, Mier J, Travieso LG, Yu T-S, et al. Endogenous neural stem/progenitor cells stabilize the cortical microenvironment after traumatic brain injury. Journal of Neurotrauma. 2015; 32(11): 753-64. [DOI:10.1089/neu.2014.3390]
29. Daadi MM, Maag A-L, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PloS One. 2008; 3(2). [DOI:10.1371/journal.pone.0001644]
30. Alizadeh A, Ghasemi S. Importance of analyzing the genomic instability in stem cell-based therapies. Journal of Isfahan Medical School. 2016; 34(383): 572-9.
31. Nakano-Doi A, Nakagomi T, Fujikawa M, Nakagomi N, Kubo S, Lu S, et al. Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction. Stem Cells. 2010; 28(7): 1292-302. [DOI:10.1002/stem.454]
32. Baker EW, Kinder HA, West FD. Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain and Behavior. 2019; 9(3): e01214. [DOI:10.1002/brb3.1214]
33. Kokaia Z, Llorente IL, Carmichael ST. Customized brain cells for stroke patients using pluripotent stem cells. Stroke. 2018; 49(5): 1091-8. [DOI:10.1161/STROKEAHA.117.018291]
34. Oyamada N, Itoh H, Sone M, Yamahara K, Miyashita K, Park K, et al. Transplantation of vascular cells derived from human embryonic stem cells contributes to vascular regeneration after stroke in mice. Journal of Translational Medicine. 2008; 6(1): 54. [DOI:10.1186/1479-5876-6-54]
35. Tat PA, Sumer H, Jones KL, Upton K, Verma PJ. The efficient generation of induced pluripotent stem (iPS) cells from adult mouse adipose tissue-derived and neural stem cells. Cell Transplantation. 2010; 19(5): 525-36. [DOI:10.3727/096368910X491374]
36. Shtrichman R, Germanguz I, Eldor JI. Induced pluripotent stem cells (iPSCs) derived from different cell sources and their potential for regenerative and personalized medicine. Current Molecular Medicine. 2013; 13(5): 792-805. [DOI:10.2174/1566524011313050010]
37. Kokaia Z, Tornero D, Lindvall O. Transplantation of reprogrammed neurons for improved recovery after stroke. Progress in Brain Research. 2017; 231: 245-63. [DOI:10.1016/bs.pbr.2016.11.013]
38. Gore A, Li Z, Fung H-L, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011; 471(7336): 63-7. [DOI:10.1038/nature09805]
39. Tornero D, Wattananit S, Grønning Madsen M, Koch P, Wood J, Tatarishvili J, et al. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain. 2013; 136(12): 3561-77. [DOI:10.1093/brain/awt278]
40. Wang X, Mao X, Xie L, Greenberg DA, Jin K. Involvement of notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. Journal of Cerebral Blood Flow & Metabolism. 2009; 29(10): 1644-54. [DOI:10.1038/jcbfm.2009.83]
41. Guzman R, De Los Angeles A, Cheshier S, Choi R, Hoang S, Liauw J, et al. Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke. 2008; 39(4): 1300-6. [DOI:10.1161/STROKEAHA.107.500470]
42. Sarmah D, Kaur H, Saraf J, Pravalika K, Goswami A, Kalia K, et al. Getting closer to an effective intervention of ischemic stroke: the big promise of stem cell. Translational Stroke Research. 2017; 1-19. [DOI:10.1007/s12975-017-0580-0]
43. Kirschen GW, Sailor KA, Ge S. Structural plasticity induced by adult neurogenesis. The Rewiring Brain. 2017; 27-48. [DOI:10.1016/B978-0-12-803784-3.00002-0]
44. Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S. Neural precursor cells in the ischemic brainâ€"integration, cellular crosstalk, and consequences for stroke recovery. Frontiers in Cellular Neuroscience. 2014; 8: 1-9. [DOI:10.3389/fncel.2014.00291]
45. Chen J, Venkat P, Zacharek A, Chopp M. Neurorestorative therapy for stroke. Frontiers in Human Neuroscience. 2014; 8: 1-12. [DOI:10.3389/fnhum.2014.00382]
46. Lindvall O, Kokaia Z. Stem cell research in stroke: how far from the clinic? Stroke. 2011; 42(80). [DOI:10.1161/STROKEAHA.110.599654]
47. Poulatsidou K-N, Lagoudaki R, Touloumi O, Kesidou E, Boziki M, Ravanidis S, et al. Immunophenotype of mouse cerebral hemispheres-derived neural precursor cells. Neuroscience Letters. 2016; 611: 33-9. [DOI:10.1016/j.neulet.2015.11.011]
48. Koliatsos VE, Yan J, Johe KK. Survival, differentiation and structural integration of human neural stem cells grafted into the adult rat spinal cord. Google Patents. 2015.
49. Koh S-H, Park H-H. Neurogenesis in stroke recovery. Translational Stroke Research. 2017; 8(1): 3-13. [DOI:10.1007/s12975-016-0460-z]
50. Chen X, Zhou B, Yan T, Wu H, Feng J, Chen H, et al. Peroxynitrite enhances self-renewal, proliferation and neuronal differentiation of neural stem/progenitor cells through activating hif-1î± and wnt/î²-catenin signaling pathway. Free Radical Biology and Medicine. 2018; 117: 158-67. [DOI:10.1016/j.freeradbiomed.2018.02.011]
51. Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Therése K, et al. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. Journal of Cerebral Blood Flow & Metabolism. 2011; 31(1): 235-42. [DOI:10.1038/jcbfm.2010.81]
52. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411): 143-7. [DOI:10.1126/science.284.5411.143]
53. Shen Y, Venkat P, Chopp M, Chen J. Mesenchymal stromal cell therapy of stroke. Cellular and Molecular Approaches to Regeneration and Repair. 2018; 217-37. [DOI:10.1007/978-3-319-66679-2_11]
54. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Molecular Therapy. 2005; 11(1): 96-104. [DOI:10.1016/j.ymthe.2004.09.020]
55. Toyoshima A, Yasuhara T, Kameda M, Morimoto J, Takeuchi H, Wang F, et al. Intra-arterial transplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: analyses of therapeutic time window and its mechanisms. PloS One. 2015; 10(6): e0127302. [DOI:10.1371/journal.pone.0127302]
56. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Molecular Therapy. 2004; 9(2): 189-97. [DOI:10.1016/j.ymthe.2003.10.012]
57. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regenerative Medicine. 2010; 5(1):121-43. [DOI:10.2217/rme.09.74]
58. Shen LH, Xin H, Li Y, Zhang RL, Cui Y, Zhang L, et al. Endogenous tissue plasminogen activator mediates bone marrow stromal cell-induced neurite remodeling after stroke in mice. Stroke. 2011; 42(2): 459-64. [DOI:10.1161/STROKEAHA.110.593863]
59. Leu S, Lin Y-C, Yuen C-M, Yen C-H, Kao Y-H, Sun C-K, et al. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. Journal of Translational Medicine. 2010; 8(1): 63. [DOI:10.1186/1479-5876-8-63]
60. Heo JS, Choi Y, Kim H-S, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. International Journal of Molecular Medicine. 2016; 37(1): 115-25. [DOI:10.3892/ijmm.2015.2413]
61. Shichinohe H, Ishihara T, Takahashi K, Tanaka Y, Miyamoto M, Yamauchi T, et al. Bone marrow stromal cells rescue ischemic brain by trophic effects and phenotypic change toward neural cells. Neurorehabilitation and Neural Repair. 2015; 29(1): 80-9. [DOI:10.1177/1545968314525856]
62. Jin K, Mao XO, Sun Y, Xie L, Greenberg DA. Stem cell factor stimulates neurogenesis in vitro and in vivo. The Journal of Clinical Investigation. 2004; 110(3): 311-9. [DOI:10.1172/JCI0215251]
63. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2011; 32(4): 1005-11. [DOI:10.1161/01.STR.32.4.1005]
64. Deng S, Zhang S, Sun K, Wang R, Wang J, Lin Y. Fundamental concepts and features of mesenchymal stem cells: proliferation, differentiation, migration and immunomodulatory characteristics. Mesenchymal Stem Cells and Craniofacial Regeneration. 2016; 3-32. [DOI:10.2174/9781681083155116010003]
65. Scheibe F, Ladhoff J, Huck J, Grohmann M, Blazej K, Oersal A, et al. Immune effects of mesenchymal stromal cells in experimental stroke. Journal of Cerebral Blood Flow & Metabolism. 2012; 32(8): 1578-88. [DOI:10.1038/jcbfm.2012.55]
66. Doeppner TR, Ewert TAS, TöNGES L, Herz J, Zechariah A, ElAli A, et al. Transduction of neural precursor cells with tat-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells. 2012; 30(6): 1297-310. [DOI:10.1002/stem.1098]
67. Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. Journal of Cerebral Blood Flow & Metabolism. 2010; 30(3): 534-44. [DOI:10.1038/jcbfm.2009.219]
68. Khalil MM, Tremoleda JL, Bayomy TB, Gsell W. Molecular SPECT imaging: an overview. International Journal of Molecular Imaging. 2011; 2011. [DOI:10.1155/2011/796025]
69. Hicks A, Jolkkonen J. Challenges and possibilities of intravascular cell therapy in stroke. Acta Neurobiol Exp (Wars). 2009; 69(1): 1-11.
70. Arbab AS, Thiffault C, Navia B, Victor SJ, Hong K, Zhang L, et al. Tracking of In-111-labeled human umbilical tissue-derived cells (hUTC) in a rat model of cerebral ischemia using SPECT imaging. BMC Medical Imaging. 2012; 12(1): 33. [DOI:10.1186/1471-2342-12-33]
71. Gervois P, Wolfs E, Ratajczak J, Dillen Y, Vangansewinkel T, Hilkens P, et al. Stem cell‐based therapies for ischemic stroke: preclinical results and the potential of imaging‐assisted evaluation of donor cell fate and mechanisms of brain regeneration. Medicinal Research Reviews. 2016; 36(6): 1080-126. [DOI:10.1002/med.21400]



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alavian F, Ghasemi S. Stem Cell-Based Stroke Treatment. Shefaye Khatam 2019; 8 (1) :99-110
URL: http://shefayekhatam.ir/article-1-2044-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 1 (Winter - 2019) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 47 queries by YEKTAWEB 4660