:: Volume 8, Issue 3 (Summer - 2020) ::
Shefaye Khatam 2020, 8(3): 1-9 Back to browse issues page
Protective Effects of Cherry Extract on Malondialdehyde Levels, Catalase Activity, and Edema Induced by Middle Cerebral Artery Occlusion in a Rat Stroke Model
Firoozeh Alavian * , Kimia Alavian , Saeedeh Ghiasvand , Leila Rezaeian
Faculty of Basic Sciences, Farhangian University, Tehran, Iran , f.alavian@cfu.ac.ir
Abstract:   (4546 Views)
Introduction: The neurological damage caused by stroke is a leading cause of severe long-term disability. The production of ideal drugs in the treatment of stroke is still a major problem. The aim of the present study was to investigate some protective effects of cherry extract against oxidative stress and edema volume caused by stroke. Materials and Methods: In this experimental study, male Wistar rats were used; including 2 control groups of saline, 2 sham groups, 2 non-treated stroke groups, and stroke groups received cherry extract at doses of 175, 200, and 225 mg/kg/day. After 30 days of oral gavage of the extract, the animals were exposed to middle cerebral artery occlusion for one hour. After 24 hours of reperfusion, the malondialdehyde level, catalase activity, and edema volume of the cortex and the sub-cortical tissue were investigated. Results: Cherry extract at doses of 175 and 200 mg/kg significantly decreased the level of malondialdehyde and edema volume in the cortex and subcortex. This extract at a dose of 225 mg/kg significantly reduced the level of malondialdehyde in the cortex and sub-cortical tissue and significantly decreased the volume of edema in the cortex. Besides, cherry extract at 175 mg/kg increased catalase activity in both cortical and subcortical regions. Conclusion: The study showed that oral administration of the cherry extract exerts neuroprotective effects against oxidative stress and the edema formation resulted from middle cerebral artery occlusion stroke model in a dose-dependent manner.
Keywords: Stroke, Catalase, Malondialdehyde
Full-Text [PDF 660 kb]   (1702 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
1. Roffe C, Nevatte T, Sim J, Bishop J, Ives N, Ferdinand P, et al. Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: the stroke oxygen study randomized clinical trial. Jama. 2017; 318(12): 1125-35. [DOI:10.1001/jama.2017.11463]
2. Alavian F, Haizadeh S. Cognitive disorders resulting from stroke. Advances in Cognitive Science. 2018; 20(3): 15-33. [DOI:10.1111/bdi.20_12616]
3. Kandiah N, Wiryasaputra L, Narasimhalu K, Karandikar A, Marmin M, Chua EV, et al. Frontal subcortical ischemia is crucial for post stroke cognitive impairment. J Neurol Sci. 2011; 309(1): 92-5. [DOI:10.1016/j.jns.2011.07.013]
4. Rowe F, Brand D, Jackson CA, Price A, Walker L, Harrison S, et al. Visual impairment following stroke: do stroke patients require vision assessment? Age and Ageing. 2008; 38(2): 188-93. [DOI:10.1093/ageing/afn230]
5. Li M-k, Li Y-j, Zhang G-f, Chen J-q, Zhang J-p, Qi J, et al. Acupuncture for ischemic stroke: cerebellar activation may be a central mechanism following Deqi. Neural Regen Res. 2015; 10(12): 1997-2003. [DOI:10.4103/1673-5374.172318]
6. Barkley RA, Grodzinsky G, DuPaul GJ. Frontal lobe functions in attention deficit disorder with and without hyperactivity: A review and research report. J Abnorm Child Psychol. 1992; 20(2): 163-88. [DOI:10.1007/BF00916547]
7. Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment-a critical update. Front Aging Neurosci. 2013; 5: 17. doi: 10.3389/fnagi.2013.00017. [DOI:10.3389/fnagi.2013.00017]
8. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Maller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015; 18(5): 631-6. [DOI:10.1038/nn.4000]
9. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 1999; 156(5): 675-82.
10. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998; 121(4): 561-79. [DOI:10.1093/brain/121.4.561]
11. Miniño AM, Murphy SL, Xu J, Kochanek KD. Deaths: final data for 2008. National vital statistics reports. National Vital Statistics Reports. 2010; 59(2): 1-52.
12. Tarr R, Hsu D, Kulcsar Z, Bonvin C, Rufenacht D, Alfke K, et al. The POST trial: initial post-market experience of the Penumbra system: revascularization of large vessel occlusion in acute ischemic stroke in the United States and Europe. J Neurointerv Surg. 2010; 2(4): 341-4. [DOI:10.1136/jnis.2010.002600]
13. Alavian F, Hajizadeh S, Bigdeli MR, Javan M. The role of protein kinase C in ischemic tolerance induced by hyperoxia in rats with stroke. EXCLI Journal. 2012; 11: 188.
14. Alavian F. Hypothermia and stroke: pros and cons. Shefaye Khatam. 2019; 7(2): 83-98. [DOI:10.29252/shefa.7.2.83]
15. Naderi S, Ali Mohammadi R, Shamsi Zadeh A, Mobini M, Amin F, Allahtavakoli M. The effect of exercise preconditioning on stroke outcome in an experimental mice model. Shefaye Khatam. 2015; 3(3): 45-53. [DOI:10.18869/acadpub.shefa.3.3.45]
16. Sahraeian S, Edalatmanesh MA. The neuroprotective effect of sodium butyrate on short-term memory and serum level of b-cell lymphoma 2 in a rat model of cerebral hypoxic-ischemia. Shefaye Khatam. 2018; 6(1): 34-40. [DOI:10.29252/shefa.6.1.34]
17. Alavian F, Ghiasvand S. Protective effects of jujube extract against permeability of blood-brain barrier, and the activity of glutathione peroxidase and catalase in stroke model. Journal of Isfahan Medical School. 2018; 36(475): 379-85.
18. Kirisattayakul W, Wattanathorn J, Tong-Un T, Muchimapura S, Wannanon P, Jittiwat J. Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion. Oxid Med Cell Longev. 2013; 2013. doi: 10.1155/2013/951415. [DOI:10.1155/2013/951415]
19. Vakili A, Einali MR, Bandegi AR. Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. J Stroke Cerebrovasc Dis. 2014; 23(1): 106-13. [DOI:10.1016/j.jstrokecerebrovasdis.2012.10.008]
20. Panahpour H, Golmohammadi M, Mohamadnejad S. Effects of the treatment with-nigella sativa oil on brain injury and edema in experimental model of stroke in rats. Journal of Ardabil University of Medical Sciences. 2015; 15(3): 301-10.
21. Rabiei Z, Bigdeli M, Lorigooini Z. A review of medicinal herbs with antioxidant properties in the treatment ‎of cerebral ischemia and reperfusion. Journal of Babol University Of Medical Sciences. 2015; 17(12): 47-56.
22. Godos J, Marventano S, Mistretta A, Galvano F, Grosso G. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int J Food Sci Nutr. 2017; 68(6): 750-6. [DOI:10.1080/09637486.2017.1285870]
23. Pissard A, Lateur M, Baeten V, Magein H, Dupont P, Tabart J, et al. Determination of total phenolic compound content and antioxidant activity in cherry species and cultivars. Journal of Berry Research. 2016; 6(1): 81-91. [DOI:10.3233/JBR-150109]
24. Homoki JR, Nemes A, Fazekas E, Gyémánt G, Balogh P, Gál F, et al. Anthocyanin composition, antioxidant efficiency, and α-amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.). Food Chem. 2016; 194: 222-9. [DOI:10.1016/j.foodchem.2015.07.130]
25. Karaaslan M, Yılmaz FM, Karaaslan A, Vardin H. Synthesis and accumulation of anthocyanins in sour cherries during ripening in accordance with antioxidant capacity development and chalcone synthase expression. European Food Research and Technology. 2016; 242(2): 189-98. [DOI:10.1007/s00217-015-2530-y]
26. Wojdyło A, Nowicka P, Laskowski P, Oszmiański J. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. J Agric Food Chem. 2014; 62(51): 12332-45. [DOI:10.1021/jf504023z]
27. Bialasiewicz P, Prymont-Przyminska A, Zwolinska A, Sarniak A, Wlodarczyk A, Krol M, et al. Sour cherries but not apples added to the regular diet decrease resting and fmlp-stimulated chemiluminescence of fasting whole blood in healthy subjects. J Am Coll Nutr. 2018; 37(1): 24-33. [DOI:10.1080/07315724.2017.1354739]
28. Cásedas G, Les F, Gómez-Serranillos MP, Smith C, López V. Bioactive and functional properties of sour cherry juice (Prunus cerasus). Food Funct. 2016; 7(11): 4675-82. [DOI:10.1039/C6FO01295G]
29. Thangthaeng N, Poulose SM, Gomes SM, Miller MG, Bielinski DF, Shukitt-Hale B. Tart cherry supplementation improves working memory, hippocampal inflammation, and autophagy in aged rats. Age. 2016; 38(5-6): 393-404. [DOI:10.1007/s11357-016-9945-7]
30. Kim D-O, Heo HJ, Kim YJ, Yang HS, Lee CY. Sweet and sour cherry phenolics and their protective effects on neuronal cells. J Agric Food Chem. 2005; 53(26): 9921-7. [DOI:10.1021/jf0518599]
31. Matchynski JJ, Lowrance SA, Pappas C, Rossignol J, Puckett N, Sandstrom M, et al. Combinatorial treatment of tart cherry extract and essential fatty acids reduces cognitive impairments and inflammation in the mu-p75 saporin-induced mouse model of Alzheimer's disease. J Med Food. 2013; 16(4): 288-95. [DOI:10.1089/jmf.2012.0131]
32. Tahsini L, Heydari R, Ilkhanipoor M, Zare S, Nejati V. The Survey of administration of cherries ethanolic extract on the serum levels of lipids of diabetic rats. Journal of Medicinal Plants. 2010; 1(33): 41-8.
33. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20: 84-91. [DOI:10.1161/01.STR.20.1.84]
34. Buege JA, Aust SD. [30] Microsomal lipid peroxidation. Methods in Enzymology. 1978; 52: 302-10. [DOI:10.1016/S0076-6879(78)52032-6]
35. Bromont C, Marie C, Bralet J. Increased lipid peroxidation in vulnerable brain regions after transient forebrain ischemia in rats. Stroke. 1989; 20(7): 918-24. [DOI:10.1161/01.STR.20.7.918]
36. Szabo ME, Gallyas E, Bak I, Rakotovao A, Boucher F, de Leiris J, et al. Heme oxygenase-1-related carbon monoxide and flavonoids in ischemic/reperfused rat retina. Invest Ophthalmol Vis Sci. 2004; 45(10): 3727-32. [DOI:10.1167/iovs.03-1324]
37. Bak I, Lekli I, Juhasz B, Nagy N, Varga E, Varadi J, et al. Cardioprotective mechanisms of Prunus cerasus (sour cherry) seed extract against ischemia-reperfusion-induced damage in isolated rat hearts. Am J Physiol Heart Circ Physiol. 2006; 291(3): H1329-H36. [DOI:10.1152/ajpheart.01243.2005]
38. Shukitt-Hale B, Kelly ME, Bielinski DF, Fisher DR. Tart cherry extracts reduce inflammatory and oxidative stress signaling in microglial cells. Antioxidants (Basel). 2016; 5(4): 33. doi: 10.3390/antiox5040033. [DOI:10.3390/antiox5040033]
39. Matias AA, Rosado-Ramos R, Nunes SL, Figueira I, Serra AT, Bronze MR, et al. Protective effect of a (poly) phenol-rich extract derived from sweet cherries culls against oxidative cell damage. Molecules. 2016; 21(4): 406. doi: 10.3390/molecules21040406. [DOI:10.3390/molecules21040406]
40. Ferretti G, Bacchetti T, Belleggia A, Neri D. Cherry antioxidants: from farm to table. Molecules. 2010; 15(10): 6993-7005. [DOI:10.3390/molecules15106993]
41. Pasquariello MS, Di Patre D, Mastrobuoni F, Zampella L, Scortichini M, Petriccione M. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest Biology and Technology. 2015; 109: 45-56. [DOI:10.1016/j.postharvbio.2015.06.007]
42. Šarić A, Sobočanec S, Balog T, Kušić B, Šverko V, Dragović-Uzelac V, et al. Improved antioxidant and anti-inflammatory potential in mice consuming sour cherry juice (Prunus Cerasus cv. Maraska). Plant Foods Hum Nutr. 2009; 64(4): 231-7. [DOI:10.1007/s11130-009-0135-y]
43. Lambiase MJ, Kubzansky LD, Thurston RC. Prospective study of anxiety and incident stroke. Stroke. 2014; 45(2): 438-43. [DOI:10.1161/STROKEAHA.113.003741]
44. Kent K, Charlton K, Roodenrys S, Batterham M, Potter J, Traynor V, et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur J Nutr. 2017; 56(1): 333-41. [DOI:10.1007/s00394-015-1083-y]
45. Liu Z, Cai Y, Zhang X, Zhu Z, He J. High serum levels of malondialdehyde and antioxidant enzymes are associated with post-stroke anxiety. Neurol Sci. 2018; 39(6): 999-1007. [DOI:10.1007/s10072-018-3287-4]
46. Xiong X-Y, Liu L, Yang Q-W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016; 142: 23-44. [DOI:10.1016/j.pneurobio.2016.05.001]
47. Park HR, Park M, Choi J, Park K-Y, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett. 2010; 482(3): 235-9. [DOI:10.1016/j.neulet.2010.07.046]
48. Brekke E, Berger HR, Widerøe M, Sonnewald U, Morken TS. Glucose and intermediary metabolism and astrocyte-neuron interactions following neonatal hypoxia-ischemia in rat. Neurochem Res. 2017; 42(1): 115-32. [DOI:10.1007/s11064-016-2149-9]
49. Garcia JH, Liu K-F, Ye Z-R, Gutierrez JA. Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke. 1997; 28(11): 2303-10. [DOI:10.1161/01.STR.28.11.2303]

XML   Persian Abstract   Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 3 (Summer - 2020) Back to browse issues page