[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
اصول اخلاقی::
ثبت نام و اشتراک::
تسهیلات پایگاه::
تماس با ما::
::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
Copyright Policies

AWT IMAGE

..
Open Access Policy

نحوه دسترسی به تمام مقالات مجله بصورت زیر است:

Creative Commons License
..

..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 9، شماره 2 - ( بهار 1400 ) ::
دوره 9 شماره 2 صفحات 150-140 برگشت به فهرست نسخه ها
مروری بر خواص شیر مادر با تأکید بر پتانسیل حفاظت عصبی سلول‌های بنیادی مشتق شده از شیر مادر انسانی
محمد امین عدالت منش*
گروه زیست شناسی، دانشکده علوم، دانشگاه آزاد اسلامی، شیراز، ایران ، amin.edalatmanesh@gmail.com
چکیده:   (1937 مشاهده)
مقدمه: در سال‌های اخیر، کشف سلول‌های بنیادی در شیر مادر، سرنوشت این سلول‌ها در نوزادان شیرخوار و نقش بالقوه آن‌ها در پزشکی ترمیمی مورد توجه بوده است. با توجه به انعطاف‌پذیری و ظرفیت تمایزی بالای این سلول‌ها و نیز امکان تمایز آن‌ها به سلول‌های شبه عصبی، نقش این سلول‌ها در طول شیرخوارگی و امکان مهاجرت آن‌ها در امتداد محور روده- مغز به طور گسترده‌‌ای بررسی شده است. نتیجه‌گیری: ارزیابی ویژگی‌های جذاب شیر مادر، نقش احتمالی سلول‌های بنیادی شیر در بهبود اختلالات عصبی نوزادی و امکان افزایش ضریب هوشی نوزادان به واسطه انتقال این سلول‌ها به مغز نوزاد و پتانسیل درمانی آن‌ها در پزشکی ترمیمی عصبی مرور شد.
واژه‌های کلیدی: سلول‌های بنیادی، حفاظت عصبی، میکروبیوتا
متن کامل [PDF 828 kb]   (1435 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: نوروبيولوژي مولكولي
فهرست منابع
1. Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci. 2019; 20(9): 2158. [DOI:10.3390/ijms20092158]
2. Ramaswamy S, Jain S, Ravindran V. Hematopoietic stem cell transplantation for auto immune rheumatic diseases. World J Transplant. 2016; 6(1): 199-205. [DOI:10.5500/wjt.v6.i1.199]
3. Hashemzadeh MR, Seyedi Z, Edalatmanesh MA, Rafiei S. Regulation of Gene Expression in Neural Stem Cell Differentiation and Self-Renewal. Shefaye Khatam. 2015; 3(4): 87-98. [DOI:10.18869/acadpub.shefa.3.4.87]
4. Accomasso L, Gallina C, Turinetto V, Giachino C. Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview. Stem Cells Int. 2016; 2016: 7920358. [DOI:10.1155/2016/7920358]
5. Adam RC, Fuchs E. The Yin and Yang of Chromatin Dynamics In Stem Cell Fate Selection. Trends Genet. 2016; 32(2)89-100. [DOI:10.1016/j.tig.2015.11.002]
6. Wuputra K, Ku CC, Wu DC, Lin YC, Saito S, Yokoyama KK. Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res. 2020; 39(1): 100. [DOI:10.1186/s13046-020-01584-0]
7. Aloia L, McKie MA, Huch M. Cellular plasticity in the adult liver and stomach. J Physiol. 2016; 594(17): 4815-4825. [DOI:10.1113/JP271769]
8. Zhang Z, Zhuang L, Lin CP. Roles of MicroRNAs in Establishing and Modulating Stem Cell Potential [published correction appears in Int J Mol Sci. 2020 May 29;21(11):]. Int J Mol Sci. 2019; 20(15): 3643. [DOI:10.3390/ijms20153643]
9. Li P, Gong Z, Shultz LD, Ren G. Mesenchymal stem cells: From regeneration to cancer. Pharmacol Ther. 2019; 200: 42-54. [DOI:10.1016/j.pharmthera.2019.04.005]
10. Friedenstein A J, Piatetzky-Shapiro II. Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966; 16(3): 381-90. [DOI:10.1242/dev.16.3.381]
11. Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020; 53(1): e12712. [DOI:10.1111/cpr.12712]
12. Klein D. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy. Stem Cells Int. 2016; 2016: 1905846. [DOI:10.1155/2016/1905846]
13. Mishra VK, Shih HH, Parveen F, Lenzen D, Ito E, Chan TF, et al. Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells. 2020; 9(5): 1145. [DOI:10.3390/cells9051145]
14. Chen C, Hou J. Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Res Ther. 2016; 7: 16. [DOI:10.1186/s13287-016-0283-6]
15. Zhao L, Hu C, Han F, Cai F, Wang J, Chen J. Preconditioning is an effective strategy for improving the efficiency of mesenchymal stem cells in kidney transplantation. Stem Cell Res Ther. 2020; 11(1): 197. [DOI:10.1186/s13287-020-01721-8]
16. Bento G, Shafigullina AK, Rizvanov AA, Sardão VA, Macedo MP, Oliveira PJ. Urine-Derived Stem Cells: Applications in Regenerative and Predictive Medicine. Cells. 2020; 9(3): 573. [DOI:10.3390/cells9030573]
17. Khademian Raad R, Rafiei S, Malekzadeh S, Edalatmanesh M A. Urine-Derived Stem Cells: A New Class of Stem Cells in Treatment of Neurodegenerative Disorders. Shefaye Khatam. 2017; 5(1): 87-97. [DOI:10.18869/acadpub.shefa.5.1.87]
18. Edalatmanesh MA, Nikfarjam H, Moghadas M, Haddad-Mashadrizeh A, Robati R, Hashemzadeh MR. Histopathological and behavioral assessment of toxin-produced cerebellar lesion: a potent model for cell transplantation studies in the cerebellum. Cell J. 2014; 16(3): 325-34.
19. Edalatmanesh MA, Bahrami AR, Hosseini E, Hosseini M, Khatamsaz S. Neuroprotective effects of mesenchymal stem cell transplantation in animal model of cerebellar degeneration. Neurol Res. 2011b; 33(9): 913-20. [DOI:10.1179/1743132811Y.0000000036]
20. Edalatmanesh MA, Matin MM, Neshati Z, Bahrami AR, Kheirabadi M Systemic transplantation of mesenchymal stem cells can reduce cognitive and motor deficits in rats with unilateral lesions of the neostriatum. Neurol Res. 2010; 32(2): 166-72. [DOI:10.1179/174313209X409025]
21. Bagherpoor AJ, Bahrami AR, Matin MM, Mahdavi-Shahri N, Edalatmanesh MA. Investigating the effects of vitreous humour (crude extract) on growth and differentiation of rat mesenchymal stem cells (rMSCs) and human NTERA2 cells. Tsitol Genet. 2010; 44(6): 15-21. [DOI:10.3103/S0095452710060034]
22. Gashmardi N, Hosseini SE, Mehrabani D, Edalatmanesh MA, Khodabandeh Z. Impacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice. Iran J Med Sci. 2017; 42(6):593-98.
23. Rezaeian L, Hosseini SE, Dianatpour M, Edalatmanesh MA, Tanideh N, Mogheiseh A, et al. Intrauterine xenotransplantation of human Wharton jelly-derived mesenchymal stem cells into the liver of rabbit fetuses: A preliminary study for in vivo expression of the human liver genes. Iran J Basic Med Sci. 2018; 21(1): 89-96.
24. Haddad-Mashadrizeh A, Bahrami AR, Matin MM, Edalatmanesh MA, Zomorodipour A, Gardaneh M, et al. Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation. 2013; 20(3): 165-176. [DOI:10.1111/xen.12033]
25. Naderi-Meshkin H, Matin MM, Heirani-Tabasi A, Mirahmadi M, Irfan-Maqsood M, Edalatmanesh MA, et al. Injectable hydrogel delivery plus preconditioning of mesenchymal stem cells: exploitation of SDF-1/CXCR4 axis toward enhancing the efficacy of stem cells' homing. Cell Biol Int. 2016; 40(7): 730-41. [DOI:10.1002/cbin.10474]
26. Chen-Shuang Li, Pu Yang, Kang Ting, Tara Aghaloo, Soonchul Lee, Yulong Zhang, et al. Fibromodulin reprogrammed cells: A novel cell source for bone regeneration. Biomaterials. 2016; 83: 194-206. [DOI:10.1016/j.biomaterials.2016.01.013]
27. Radwan IA, Rady D, Abbass MMS, El Moshy S, AbuBakr N, Dörfer CE, et al. Induced Pluripotent Stem Cells in Dental and Nondental Tissue Regeneration: A Review of an Unexploited Potential. Stem Cells Int. 2020; 2020: 1941629. [DOI:10.1155/2020/1941629]
28. Hassiotou F, Hartmann PE. At the dawn of a new discovery: the potential of breast milk stem cells. Adv Nutr. 2014; 5(6): 770-78. [DOI:10.3945/an.114.006924]
29. Ninkina N, Kukharsky MS, Hewitt MV, Lysikova EA, Skuratovska LN, Deykin AV, et al. Stem cells in human breast milk. Hum Cell. 2019; 32(3): 223-30. [DOI:10.1007/s13577-019-00251-7]
30. Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients. 2020; 12(4): 1039. [DOI:10.3390/nu12041039]
31. Demmelmair H, Jiménez E, Collado MC, Salminen S, McGuire MK. Maternal and Perinatal Factors Associated with the Human Milk Microbiome. Curr Dev Nutr. 2020; 4(4): nzaa027. [DOI:10.1093/cdn/nzaa027]
32. Zuurveld M, van Witzenburg NP, Garssen J, Folkerts G, Stahl B, Van't Land B, et al. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Front Immunol. 2020; 11: 801. [DOI:10.3389/fimmu.2020.00801]
33. Wigger AJ, Hepworth AR, Lai CT, Chetwynd E, Stuebe AM, Blancafort P, et al. Gene expression in breastmilk cells is associated with maternal and infant characteristics. Sci Rep. 2015; 5: 12933. [DOI:10.1038/srep12933]
34. Gila-Diaz A, Arribas SM, Algara A, Martín-Cabrejas MA, López de Pablo ÁL, Sáenz de Pipaón M, et al. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients. 2019; 11(6): 1307. [DOI:10.3390/nu11061307]
35. Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett. 2017; 22: 11. [DOI:10.1186/s11658-017-0042-4]
36. Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JK. Unravelling the mystery of stem/progenitor cells in human breast milk. PLoS One. 2010; 5(12): e14421. [DOI:10.1371/journal.pone.0014421]
37. Maternal, Perinatal, and Pediatric Nutrition. Curr Dev Nutr. 2018; 2(11): nzy040. [DOI:10.1093/cdn/nzy040]
38. Erick M. Breast milk is conditionally perfect. Med Hypotheses. 2018; 111: 82-89. [DOI:10.1016/j.mehy.2017.12.020]
39. Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human Milk Cells and Lipids Conserve Numerous Known and Novel miRNAs, Some of Which Are Differentially Expressed during Lactation. PLoS One. 2016; 11(4): e0152610. [DOI:10.1371/journal.pone.0152610]
40. Rodríguez JM, Fernández L, Verhasselt V. The Gut-Breast Axis: Programming Health for Life. Nutrients. 2021; 13(2): 606. [DOI:10.3390/nu13020606]
41. Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012; 30(10): 2164-74. [DOI:10.1002/stem.1188]
42. Tiede B, Kang Y. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res. 2011; 21(2): 245-257. [DOI:10.1038/cr.2011.11]
43. Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: aspects and clinical applications. J Immunol Res. 2015; 2015: 394917. [DOI:10.1155/2015/394917]
44. Cregan MD, Fan Y, Appelbee A, Brown ML, Klopcic B, Koppen J, et al. Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res. 2007; 329(1):129-36. [DOI:10.1007/s00441-007-0390-x]
45. Briere CE, McGrath JM, Jensen T, Matson A, Finck C. Breast Milk Stem Cells: Current Science and Implications for Preterm Infants. Adv Neonatal Care. 2016; 16(6): 410-419. [DOI:10.1097/ANC.0000000000000338]
46. Plaza-Díaz J, Fontana L, Gil A. Human Milk Oligosaccharides and Immune System Development. Nutrients. 2018; 10(8): 1038. [DOI:10.3390/nu10081038]
47. Patki S, Kadam S, Chandra V, Bhonde R. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell. 2010; 23(2): 35-40. [DOI:10.1111/j.1749-0774.2010.00083.x]
48. Kaimala S, Bisana S, Kumar S. Mammary gland stem cells: more puzzles than explanations. J Biosci. 2012; 37(2): 349-358. [DOI:10.1007/s12038-012-9200-z]
49. Choudhary RK. Mammary stem cells: expansion and animal productivity. J Anim Sci Biotechnol. 2014; 5(1): 36. [DOI:10.1186/2049-1891-5-36]
50. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013; 60(1): 49-74. [DOI:10.1016/j.pcl.2012.10.002]
51. Donega V, van Velthoven CT, Nijboer CH, Kavelaars A, Heijnen CJ. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment. J Cereb Blood Flow Metab. 2013; 33(5): 625-634. [DOI:10.1038/jcbfm.2013.3]
52. Yang I, Corwin EJ, Brennan PA, Jordan S, Murphy JR, Dunlop A. The Infant Microbiome: Implications for Infant Health and Neurocognitive Development. Nurs Res. 2016; 65(1): 76-88. [DOI:10.1097/NNR.0000000000000133]
53. Kim H, Sitarik AR, Woodcroft K, Johnson CC, Zoratti E. Birth Mode, Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children. Curr Allergy Asthma Rep. 2019; 19(4): 22. [DOI:10.1007/s11882-019-0851-9]
54. Moore RE, Townsend SD. Temporal development of the infant gut microbiome. Open Biol. 2019; 9(9): 190128. [DOI:10.1098/rsob.190128]
55. Jang HL, Cho JY, Kim MJ, Kim EJ, Park EY, Park SA, et al. The Experience of Human Milk Banking for 8 Years: Korean Perspective. J Korean Med Sci. 2016; 31(11): 1775-783. [DOI:10.3346/jkms.2016.31.11.1775]
56. Deoni SC, Dean DC 3rd, Piryatinsky I, O'Muircheartaigh J, Waskiewicz N, Lehman K, et al. Breastfeeding and early white matter development: A cross-sectional study. Neuroimage. 2013; 82: 77-86. [DOI:10.1016/j.neuroimage.2013.05.090]
57. Spader HS, Ellermeier A, O'Muircheartaigh J, Dean DC 3rd, Dirks H, Boxerman JL, et al. Advances in myelin imaging with potential clinical application to pediatric imaging. Neurosurg Focus. 2013; 34(4): E9. [DOI:10.3171/2013.1.FOCUS12426]
58. Ahn SY, Chang YS, Park WS. Stem Cells for Neonatal Brain Disorders. Neonatology. 2016; 109(4): 377-383. [DOI:10.1159/000444905]
59. Yoshimoto M, Koenig JM. Stem Cells: Potential Therapy for Neonatal Injury?. Clin Perinatol. 2015; 42(3): 597-612. [DOI:10.1016/j.clp.2015.04.008]
60. Gu Y, He M, Zhou X, Liu J, Hou N, Bin T, et al. Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte. Sci Rep. 2016; 6: 18587. [DOI:10.1038/srep18587]
61. Yazdanfar S K, Edalatmanesh M A. Systemic transplantation of valproic acid primed human adipose stem cells on amelioration of motor deficits in animal model of cerebellar degeneration. SJKU. 2018; 23 (4) : 77-90.
62. Edalatmanesh MA, Matin MM, Neshati Z, Bahrami AR, Kheirabadi M. Systemic transplantation of mesenchymal stem cells can reduce cognitive and motor deficits in rats with unilateral lesions of the neostriatum. Neurol Res. 2010; 32(2): 166-172. [DOI:10.1179/174313209X409025]
63. Gashmardi N, Edalatmanesh MA. Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury. Shefaye Khatam. 2019; 7 (4) : 89-105. [DOI:10.29252/shefa.7.4.89]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Edalatmanesh M A. A Review of the Breast Milk Properties with Emphasis on the Neuroprotective Potential of Human Breast-Derived Stem Cells. Shefaye Khatam 2021; 9 (2) :140-150
URL: http://shefayekhatam.ir/article-1-2150-fa.html

عدالت منش محمد امین. مروری بر خواص شیر مادر با تأکید بر پتانسیل حفاظت عصبی سلول‌های بنیادی مشتق شده از شیر مادر انسانی. مجله علوم اعصاب شفای خاتم. 1400; 9 (2) :140-150

URL: http://shefayekhatam.ir/article-1-2150-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 2 - ( بهار 1400 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 53 queries by YEKTAWEB 4645