[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Home::
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Registration::
Site Facilities::
Contact us::
::
Indexed by
    
    
..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Copyright Policies

 

AWT IMAGE

 

 

AWT IMAGE

 

..
Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

..
:: Search published articles ::
Showing 1 results for Zahri

Yasaman Arzanipur, Arash Abdolmaleki, Asadollah Asadi, Saber Zahri,
Volume 9, Issue 3 (Summer 2021)
Abstract

Introduction: Tissue engineering is a part of biotechnology that includes the development of biological implants for tissue regeneration to improve tissue or organ function. This study aimed to investigate the effect of cerium oxide nanoparticles on the interactions between adipose tissue stem cells and decellularized sciatic nerve scaffolds in rats. Materials and Methods: Rats were anesthetized by injecting a mixture of ketamine (80 mg/kg) and xylazine (10 mg/kg). Sciatic nerve fragments (15 mm) were removed above the three-pronged site in the thigh muscle and decellularized after cleaning the surrounding tissues using the Sandal method. Then, adipose tissue mesenchymal cells were implanted on the scaffold, and the growth and viability of the cells implanted on the scaffold in the presence of cerium oxide nanoparticles were measured by MTT assay. Results: The results of histological evaluations showed that the scaffolds were completely decellularized and hematoxylin/eosin and Dapi staining confirmed these results. Specialized tissue evaluation by Masson trichrome staining as well as biomechanical analysis showed that collagen and elastin fibers were relatively preserved in the extracellular matrix. Cell viability on the scaffold increased in the presence of nanoparticles. Conclusion: Cerium oxide nanoparticles increase cell stability, proliferation, and maintenance of adipose tissue mesenchymal cells and may be beneficial in the treatment of peripheral nerve lesions.

Page 1 from 1     

مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.11 seconds with 35 queries by YEKTAWEB 4714