|
|
|
Volume 8, Issue 1 (Winter - 2019) |
|
|
|
Neuroprotective Effect of Quercetin in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Model of Parkinson’s Disease
|
Neda Nikokalam Nazif , Maryam Khosravi * , Ramesh Ahmadi , Maryam Bananej , Ahmad Majd |
Department of Biology, Faculty of Biological Sciences, North-Tehran Branch, Islamic Azad University, Tehran, Iran , maryam-khosravi@iau-tnb.ac.ir |
|
Abstract: (4467 Views) |
Introduction: Parkinson's disease (PD) is a common neuropathological disorder caused by degeneration of dopaminergic neurons in the substantia nigra pars compacta. Quercetin (SNPC) is a compound with both anti-inflammatory and anti-oxidant effects, which can cross the blood brain barrier. The aim of the present study was to evaluate neuroprotective effect of quercetin in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced model of PD in male mice. Materials and Methods: 48 male NMRI mice were divided into 6 groups (n=8); control, saline, MPTP, MPTP+ 20mg/kg quercetin, MPTP+ 25mg/kg quercetin, and MPTP+ 30mg/kg quercetin. To induce PD model, MPTP (25mg/ Kg) was injected intraperitoneally (i.e.) for 4 day. Catalepsy test was assessed by test bars one and 21 days after the last injection MPTP. Quercetin (20, 25, 30mg/kg/day) was applied orally for 21 days. Dopaminergic neurons of SNPC were determined by immunohistochemical labeling. The levels of interleukin 10 and TNF-α were determined in the substantia nigra and the striatum using ELISA technique. Results: Treatment with quercetin was significantly improved catalepsy. Furthermore, quercetin significantly enhanced the number of neurons in SNPC, increased interleukin 10 protein levels, and reduced TNF-α protein values. Conclusion: Quercetin may exert a neuroprotective effect on progressive cell damage and the neuronal death in the substantia nigra in PD; possibly via modulation of inflammatory mediators.
|
|
Keywords: 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine, Quercetin, Mice |
|
Full-Text [PDF 1020 kb]
(1670 Downloads)
|
Type of Study: Research --- Open Access, CC-BY-NC |
Subject:
Basic research in Neuroscience
|
|
|
|
|
References |
1. Quik M, Bordia T, Zhang D, Perez XA. Nicotine and nicotinic receptor drugs: potential for Parkinson's disease and drug-induced movement disorders. Int Rev Neurobiol. 2015; 124: 247-71. [ DOI:10.1016/bs.irn.2015.07.005] 2. Dorsey E, Constantinescu R, Thompson J, Biglan K, Holloway R, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007; 68(5): 384-6. [ DOI:10.1212/01.wnl.0000247740.47667.03] 3. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003; 39(6): 889-909. [ DOI:10.1016/S0896-6273(03)00568-3] 4. Lin T-K, Liou C-W, Chen S-D, Chuang Y-C, Tiao M-M, Wang P-W, et al. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson's disease. Chang Gung Med J. 2009; 32(6): 589-99. 5. Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc JL. Limitations of current Parkinson's disease therapy. Ann Neurol. 2003; 53(S3): S3-S15. [ DOI:10.1002/ana.10513] 6. Berry C, La Vecchia C, Nicotera P. Paraquat and Parkinson's disease. Cell Death Differ. 2010; 17(7): 1115-25. [ DOI:10.1038/cdd.2009.217] 7. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med. 1995; 155(4): 381-6. [ DOI:10.1001/archinte.1995.00430040053006] 8. Li X, Wang R, Zhou N, Wang X, Liu Q, Bai Y, et al. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model. Biomed Rep. 2013; 1(1): 71-6. [ DOI:10.3892/br.2012.27] 9. Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord. 2013; 12(1): 43. doi: 10.1186/2251-6581-12-43. [ DOI:10.1186/2251-6581-12-43] 10. Panchal SK, Poudyal H, Brown L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J Nutr. 2012; 142(6): 1026-32. [ DOI:10.3945/jn.111.157263] 11. Haleagrahara N, Siew CJ, Mitra NK, Kumari M. Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum. Neurosci Lett. 2011; 500(2): 139-43. [ DOI:10.1016/j.neulet.2011.06.021] 12. Ishisaka A, Ichikawa S, Sakakibara H, Piskula MK, Nakamura T, Kato Y, et al. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic Biol Med. 2011; 51(7): 1329-36. [ DOI:10.1016/j.freeradbiomed.2011.06.017] 13. Cao LF, Peng XY, Huang Y, Wang B, Zhou FM, Cheng RX, et al. Restoring spinal noradrenergic inhibitory tone attenuates pain hypersensitivity in a rat model of Parkinson's disease. Neural Plast. 2016; 2016. [ DOI:10.1155/2016/6383240] 14. Shobana C, Kumar RR, Sumathi TJC, neurobiology m. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study. Cellular and Molecular Neurobiology. 2012; 32(7): 1099-112. [ DOI:10.1007/s10571-012-9833-3] 15. Craig WJ. Health-promoting properties of common herbs. The American Journal of Clinical Nutrition. 1999; 70(3): 491s-9s. [ DOI:10.1093/ajcn/70.3.491s] 16. Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, et al. Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci. 2008; 28(22): 5756-61. [ DOI:10.1523/JNEUROSCI.1179-08.2008] 17. Toy WA, Petzinger GM, Leyshon BJ, Akopian GK, Walsh JP, Hoffman MV, et al. Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Neurobiol Dis. 2014; 63: 201-9. [ DOI:10.1016/j.nbd.2013.11.017] 18. Ferreira M, Massano J. An updated review of Parkinson's disease genetics and clinicopathological correlations. Acta Neurol Scand. 2017; 135(3): 273-84. [ DOI:10.1111/ane.12616] 19. Furia E, Marino T, Russo NJDT. Insights into the coordination mode of quercetin with the Al (III) ion from a combined experimental and theoretical study. Dalton Transactions. 2014; 43(19): 7269-74. [ DOI:10.1039/C4DT00212A] 20. Ginwala R, McTish E, Raman C, Singh N, Nagarkatti M, Nagarkatti P, et al. Apigenin, a natural flavonoid, attenuates EAE severity through the modulation of dendritic cell and other immune cell functions. J Neuroimmune Pharmacol. 2016; 11(1): 36-47. [ DOI:10.1007/s11481-015-9617-x] 21. Wruck C, Claussen M, Fuhrmann G, Römer L, Schulz A, Pufe T, et al. Luteolin protects rat PC 12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keap l-Nrf2-ARE pathway. J Neural Transm Suppl. 2007; 72: 57-67. [ DOI:10.1007/978-3-211-73574-9_9] 22. Gazal M, Kaufmann FN, Acosta BA, Oliveira PS, Valente MR, Ortmann CF, et al. Preventive effect of Cecropia pachystachya against ketamine-induced manic behavior and oxidative stress in rats. Neurochem Res. 2015; 40(7): 1421-30. [ DOI:10.1007/s11064-015-1610-5] 23. Sriraksa N, Wattanathorn J, Muchimapura S, Tiamkao S, Brown K, Chaisiwamongkol KJE-BC, et al. Cognitive-enhancing effect of quercetin in a rat model of Parkinson's disease induced by 6-hydroxydopamine. Evidence-Based Complementary and Alternative Medicine. 2012; 2012. [ DOI:10.1155/2012/823206] 24. Xia SF, Xie ZX, Qiao Y, Li LR, Cheng XR, Tang X, et al. Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress. Physiol Behav. 2015; 138: 325-31. [ DOI:10.1016/j.physbeh.2014.09.008] 25. Sharma DR, Wani WY, Sunkaria A, Kandimalla RJ, Verma D, Cameotra SS, et al. Quercetin protects against chronic aluminum-induced oxidative stress and ensuing biochemical, cholinergic, and neurobehavioral impairments in rats. Neurotox Res. 2013; 23(4): 336-57. [ DOI:10.1007/s12640-012-9351-6] 26. Nassiri-Asl M, Hajiali F, Taghiloo M, Abbasi E, Mohseni F, Yousefi F. Comparison between the effects of quercetin on seizure threshold in acute and chronic seizure models. Toxicol Ind Health. 2016; 32(5): 936-44. [ DOI:10.1177/0748233713518603] 27. Radonjić NV, Knežević ID, Vilimanovich U, Kravić-Stevović T, Marina LV, Nikolić T, et al. Decreased glutathione levels and altered antioxidant defense in an animal model of schizophrenia: long-term effects of perinatal phencyclidine administration. Neuropharmacology. 2010; 58(4-5): 739-45. [ DOI:10.1016/j.neuropharm.2009.12.009] 28. Das N, Sikder K, Bhattacharjee S, Majumdar SB, Ghosh S, Majumdar S, et al. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice. Food Funct. 2013; 4(6): 889-98. [ DOI:10.1039/c3fo30241e]
|
|
Nikokalam Nazif N, Khosravi M, Ahmadi R, Bananej M, Majd A. Neuroprotective Effect of Quercetin in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Model of Parkinson’s Disease. Shefaye Khatam 2019; 8 (1) :1-10 URL: http://shefayekhatam.ir/article-1-2026-en.html
|
|
|
|
|