1. Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harbor Perspect. Med. 2012; 2(8): a006239. [ DOI:10.1101/cshperspect.a006239] 2. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000; 22(5): 717-27. [ DOI:10.1016/S0731-7085(99)00272-1] 3. Schetinin V. Polynomial Neural Networks Learnt to Classify EEG Signals. 2001. 4. Puig D, Jayapathy R, Mohandhas B, Lazar P, Rathnam MR, Torrents-Barrena J. Complex wavelet algorithm for computer-aided diagnosis of Alzheimer's disease. Electron. Lett. 2015; 51. [ DOI:10.1049/el.2015.1735] 5. Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund LO, et al. Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG). J. Neurosci. Methods. 2007; 161(2): 342-50. [ DOI:10.1016/j.jneumeth.2006.10.023] 6. Trambaiolli LR, Falk TH, Fraga FJ, Anghinah R, Lorena AC. EEG spectro-temporal modulation energy: a new feature for automated diagnosis of Alzheimer's disease. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:3828-31. [ DOI:10.1109/IEMBS.2011.6090951] 7. McBride J, Zhao X, Munro N, Jiang Y, Smith C, Jicha G, editors. Scalp EEG signal reconstruction for detection of mild cognitive impairment and early Alzheimer's disease. 2013 Biomedical Sciences and Engineering Conference (BSEC); 2013 MAy 21-23. [ DOI:10.1109/BSEC.2013.6618497] 8. Rodrigues P, Teixeira J, Homero R, Poza J, Carreres A. Classification of Alzheimer^s Electroencephalograms using Artificial Neural Networks and Logistic Regression 2011. [ DOI:10.1109/BMEI.2010.5639941] 9. Hudson DL, Cohen ME, Kramer M, Szeri A, Chang FL, editors. Diagnostic Implications of EEG Analysis in Patients with Dementia. Conference Proceedings 2nd International IEEE EMBS Conference on Neural Engineering, 2005; 16-19. 10. Triggiani AI, Bevilacqua V, Brunetti A, Lizio R, Tattoli G, Cassano F, et al. Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks. Front. Neurosci. 2016; 10:604. [ DOI:10.3389/fnins.2016.00604] 11. Kim D, Kim K. Detection of Early Stage Alzheimer's Disease using EEG Relative Power with Deep Neural Network. Conf Proc IEEE Eng Med Biol Soc. 2018; 2018: 352-5. [ DOI:10.1109/EMBC.2018.8512231] 12. Ventouras EM, Economou NT, Kritikou I, Tsekou H, Paparrigopoulos TJ, Ktonas PY. Performance evaluation of an Artificial Neural Network automatic spindle detection system. Conf Proc IEEE Eng Med Biol Soc. 2012; 2012: 4328-31. [ DOI:10.1109/EMBC.2012.6346924] 13. Ruiz-Gomez S, Gómez C, Poza J, Gutiérrez-Tobal G, Tola-Arribas M, Cano M, et al. Automated Multiclass Classification of Spontaneous EEG Activity in Alzheimer's Disease and Mild Cognitive Impairment. Entropy. 2018; 20. [ DOI:10.3390/e20010035] 14. Rodrigues P, Teixeira J. Alzheimer's disease recognition with artificial neural networks. 2013. p. 102-18. [ DOI:10.4018/978-1-4666-3667-5.ch007] 15. Bevilacqua V, Salatino AA, Leo CD, Tattoli G, Buongiorno D, Signorile D, et al., editors. Advanced classification of Alzheimer's disease and healthy subjects based on EEG markers. 2015 International Joint Conference on Neural Networks (IJCNN); 2015 12-17 July 2015. [ DOI:10.1109/IJCNN.2015.7280463] 16. Besthorn C, Zerfass R, Geiger-Kabisch C, Sattel H, Daniel S, Schreiter-Gasser U, et al. Discrimination of Alzheimer's disease and normal aging by EEG data. Electroencephalogr. Clin. Neurophysiol. 1997; 103(2): 241-8. [ DOI:10.1016/S0013-4694(97)96562-7] 17. Morabito FC, Campolo M, Mammone N, Versaci M, Franceschetti S, Tagliavini F, et al. Deep Learning Representation from Electroencephalography of Early-Stage Creutzfeldt-Jakob Disease and Features for Differentiation from Rapidly Progressive Dementia. Int J Neural Syst. 2017; 27(2): 1650039. [ DOI:10.1142/S0129065716500398] 18. Zhao Y, He L. Deep Learning in the EEG Diagnosis of Alzheimer's Disease2014. 340-53 p. [ DOI:10.1007/978-3-319-16628-5_25] 19. Zeiler MD, editor Hierarchical Convolutional Deep Learning in Computer Vision 2013. 20. Ieracitano C, Mammone N, Bramanti A, Hussain A, Morabito FC. A Convolutional Neural Network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing. 2019; 323: 96-107. [ DOI:10.1016/j.neucom.2018.09.071] 21. Morabito FC, Campolo M, Ieracitano C, Ebadi JM, Bonanno L, Bramanti A, et al., editors. Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer's disease patients from scalp EEG recordings. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI); 2016 Sept 7-9. [ DOI:10.1109/RTSI.2016.7740576] 22. Berte F, Lamponi G, Calabro RS, Bramanti P. Elman neural network for the early identification of cognitive impairment in Alzheimer's disease. Funct Neurol. 2014; 29(1): 57-65. [ DOI:10.11138/FNeur/2014.29.1.057] 23. Kim HT, Kim BY, Park EH, Kim JW, Hwang EW, Han SK, et al. Computerized recognition of Alzheimer disease-EEG using genetic algorithms and neural network. Future Generation Computer Systems. 2005; 21(7): 1124-30. [ DOI:10.1016/j.future.2004.03.012] 24. Cho S, Kim BY, Park EH, Chang YS, Kim J, Chung K, et al. Automatic Recognition of Alzheimer's Disease Using Genetic Algorithms and Neural Network 2003. 695-702 p. [ DOI:10.1007/3-540-44862-4_75] 25. NeuCube Neurocomputing Software/Hardware Development Environment for Spiking Neural Network Applications in Data Mining, Pattern Recognition,and Predictive Data Modelling. Auckland, New Zealand: Knowledge Engineering and Discovery Research Institute 2016. 26. Capecci E, Doborjeh ZG, Mammone N, Foresta FL, Morabito FC, Kasabov N, editors. Longitudinal study of alzheimer's disease degeneration through EEG data analysis with a NeuCube spiking neural network model. 2016 International Joint Conference on Neural Networks (IJCNN); 2016 July 24-29. [ DOI:10.1109/IJCNN.2016.7727356] 27. Capecci E, Morabito F, Campolo M, Mammone N, Labate D, Kasabov N. A feasibility study of using the NeuCube spiking neural network architecture for modelling Alzheimer's disease and mild cognitive impairment EEG data2014. [ DOI:10.1007/978-3-319-18164-6_16] 28. Kasabov N, Capecci E. Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf. Sci. (N. Y.). 2015; 294: 565-75. [ DOI:10.1016/j.ins.2014.06.028] 29. Petrosian AA, Prokhorov DV, Lajara-Nanson W, Schiffer RB. Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG. Clin. Neurophysiol. 2001; 112(8): 1378-87. [ DOI:10.1016/S1388-2457(01)00579-X] 30. Petrosian A, Prokhorov D, Schiffer R, editors. Recurrent neural network and wavelet transform based distinction between Alzheimer and control EEG. Proceedings of the First Joint BMES/EMBS Conference 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat N; 1999 13-16 Oct. 1999. 31. Abe JM, Ortega NRS, Mário MC, Del Santo M, editors. Paraconsistent Artificial Neural Network: An Application in Cephalometric Analysis. Knowledge-Based Intelligent Information and Engineering Systems; 2005 2005//; Berlin, Heidelberg: Springer Berlin Heidelberg. [ DOI:10.1007/11552451_98] 32. da Silva Lopes HF, Abe JM, Anghinah R. Application of paraconsistent artificial neural networks as a method of aid in the diagnosis of Alzheimer disease. NM/MIRD Pam. 2010; 34(6): 1073-81. [ DOI:10.1007/s10916-009-9325-2] 33. Abe JM, Lopes HFdS, Anghinah R. Paraconsistent artificial neural networks and Alzheimer disease: a preliminary study. Dement Neuropsychol. 2007; 1(3): 241-7. [ DOI:10.1590/S1980-57642008DN10300004] 34. Zeinali Y, Story B. Competitive probabilistic neural network. Integrated Computer-Aided Engineering. 2017; 24:1-14. [ DOI:10.3233/ICA-170540] 35. Sankari Z, Adeli H. Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence. J. Neurosci. Methods. 2011; 197(1): 165-70. [ DOI:10.1016/j.jneumeth.2011.01.027] 36. Kruse DR. Fuzzy neural network. Germany: Institute for Information and Communication Systems; 2008. [ DOI:10.4249/scholarpedia.6043] 37. Hibino S, Hanai T, Nagata E, Matsubara M, Fukagawa K, Shirataki T, et al. Fuzzy Neural Network Model for Assessment of Alzheimer-Type Dementia. J. Chem. Eng. Jpn . 2001; 34: 936-42. [ DOI:10.1252/jcej.34.936]
|