[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 8, Issue 2 (Spring 2020) ::
Shefaye Khatam 2020, 8(2): 72-81 Back to browse issues page
Construction of Cationic Virosome Derived from Vesicular Stomatitis Virus as a Promising Candidate for Efficient Gene Delivery to the Central Nervous System
Delaram Ahmadi, Mohsen Zargar, Mohammad Reza Zolfaghari, Monireh Kazemimanesh, Amir Ghaemi *
Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran , ghaem_amir@yahoo.com
Abstract:   (346 Views)
Introduction: Nowadays, one of the barriers of gene therapy in the treatment of the CNS diseases is the lack of proper and safe carrier systems to cross the blood brain barrier (BBB). Virosomes are virus like particles which can be used in brain if made from neurotropic viruses. The aim of the study was to construct cationic virosomes derived from vesicular stomatitis virus using dialyzable short chain phospholipid (DCPC) and cationic lipid (DOTAP) in-vitro. Materials and Methods: The vesicular stomatitis virus was propagated in Vero cell line. Subsequently, the harvested virus was concentrated and purified using ultrafiltration and ultracentrifugation and finally, the virosome was synthesized by DCPC detergent and the addition of cationic lipid. Particle size distribution of virosome nanoparticles, cellular cytotoxicity and glycoprotein of vesicular stomatitis virus (VSV-G) were determined by measuring dynamic light scattering using zetasizer, MTT assay and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Results: The harvested viruses were concentrated and purified by ultrafiltration and ultracentrifugation and the final concentration was 0.8 mg/ml. The cationic virosome mean size was 186.6 nm and, the cell viability was significantly decreased after 48 hours of treatment with different concentrations of virosome compared to the control group. The VSV-G protein with molecular weight of 63 kDa was approved by SDS-PAGE. Conclusion: The use of DCPC is an efficient method for solubilization and reconstruction of vesicular stomatitis virus envelope and does not alter the surface VSV-G. Due to the VSV-G protein and its wide range cell tropism, this cationic virosome can also be a promising candidate for crossing the BBB in order to efficient gene delivery and therapy of CNS diseases.
Keywords: Virosomes, Central Nervous System, Cell Culture Techniques
Full-Text [PDF 695 kb]   (54 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
1. Lykken EA, Shyng C, Edwards RJ, Rozenberg A, Gray SJ. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J Neurodev Disord. 2018; 10(1): 16. doi: 10.1186/s11689-018-9234-0. [DOI:10.1186/s11689-018-9234-0]
2. Costantini L, Bakowska J, Breakefield X, Isacson O. Gene therapy in the CNS. Gene Ther. 2000; 7(2): 93-109. [DOI:10.1038/sj.gt.3301119]
3. Pardo J, R Morel G, Astiz M, I Schwerdt J, L Leon M, S Rodriguez S, et al. Gene therapy and cell reprogramming for the aging brain: achievements and promise. Curr Gene Ther. 2014; 14(1): 24-34. [DOI:10.2174/1566523214666140120121733]
4. Patel MM, Patel BM. Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs. 2017; 31(2): 109-33. [DOI:10.1007/s40263-016-0405-9]
5. Elias D, Blot F, El Otmany A, Antoun S, Lasser P, Boige V, et al. Curative treatment of peritoneal carcinomatosis arising from colorectal cancer by complete resection and intraperitoneal chemotherapy. Cancer. 2001; 92(1): 71-6. https://doi.org/10.1002/1097-0142(20010701)92:1<71::AID-CNCR1293>3.0.CO;2-9 [DOI:10.1002/1097-0142(20010701)92:13.0.CO;2-9]
6. Pardridge WM. Drug and gene targeting to the brain via blood-brain barrier receptor-mediated transport systems. International Congress Series. 2005; 49-62. [DOI:10.1016/j.ics.2005.02.011]
7. Maussang D, Rip J, van Kregten J, van den Heuvel A, van der Pol S, van der Boom B, et al. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov Today Technol. 2016; 20: 59-69. [DOI:10.1016/j.ddtec.2016.09.003]
8. Pardridge WM. Blood-brain barrier delivery. Drug Discov Today. 2007; 12(1-2): 54-61. [DOI:10.1016/j.drudis.2006.10.013]
9. Pandey PK, Sharma AK, Gupta U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers. 2016; 4(1): e1129476. [DOI:10.1080/21688370.2015.1129476]
10. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017; 264: 306-32. [DOI:10.1016/j.jconrel.2017.08.033]
11. Morgan JR. Gene therapy protocols. Springer Science & Business Media. 2002. [DOI:10.1385/1592591418]
12. Cevher E, Sezer AD, Çağlar E. Gene delivery systems: recent progress in viral and non-viral therapy. Recent Advances in Novel Drug Carrier Systems. 2012; 437-70. [DOI:10.5772/53392]
13. Earp LJ, Delos S, Park H, White J. The many mechanisms of viral membrane fusion proteins. Membrane Trafficking in Viral Replication. 2004; 25-66. [DOI:10.1007/3-540-26764-6_2]
14. Jardetzky TS, Lamb RA. Virology: a class act. Nature. 2004; 427(6972): 307. [DOI:10.1038/427307a]
15. Almeida J, Edwards DC, Brand C, Heath T. Formation of virosomes from influenza subunits and liposomes. The Lancet. 1975; 306(7941): 899-901. [DOI:10.1016/S0140-6736(75)92130-3]
16. Kaneda Y. Virosomes: evolution of the liposome as a targeted drug delivery system. Advanced drug Delivery Reviews. 2000; 43(2-3): 197-205. [DOI:10.1016/S0169-409X(00)00069-7]
17. Schlegel R, Dickson RB, Willingham MC, Pastan IH. Amantadine and dansylcadaverine inhibit vesicular stomatitis virus uptake and receptor-mediated endocytosis of alpha 2-macroglobulin. Proceedings of the National Academy of Sciences. 1982; 79(7): 2291-5. [DOI:10.1073/pnas.79.7.2291]
18. Wehland J, Willingham MC, Gallo MG, Pastan I. The morphologic pathway of exocytosis of the vesicular stomatitis virus G protein in cultured fibroblasts. Cell. 1982; 28(4): 831-41. [DOI:10.1016/0092-8674(82)90062-9]
19. Helenius A, Mellman I, Wall D, Hubbard A. Endosomes. Trends in Biochemical Sciences. 1983; 8(7): 245-50. [DOI:10.1016/0968-0004(83)90350-X]
20. Pastan I, Willingham MC. Receptor-mediated endocytosis: coated pits, receptosomes and the Golgi. Trends in Biochemical Sciences. 1983; 8(7): 250-4. [DOI:10.1016/0968-0004(83)90351-1]
21. Ghandehari F, Behbahani M, Pourazar A, Nourmohammadi Z. Producing vesicular stomatitis virus G (VSVG) protein and assessment of its cytotoxic activity against breast cancer cells. Journal of Isfahan Medical School. 2015; 33(325): 221-30.
22. Cartwright B, Smale C, Brown F. Surface structure of vesicular stomatitis virus. Journal of General Virology. 1969; 5(1): 1-10. [DOI:10.1099/0022-1317-5-1-1]
23. Schloemer RH, Wagner RR. Sialoglycoprotein of vesicular stomatitis virus: role of the neuraminic acid in infection. Journal of virology. 1974; 14(2): 270-81. [DOI:10.1128/JVI.14.2.270-281.1974]
24. Schloemer RH, Wagner RR. Cellular adsorption function of the sialoglycoprotein of vesicular stomatitis virus and its neuraminic acid. Journal of Virology. 1975; 15(4): 882-93. [DOI:10.1128/JVI.15.4.882-893.1975]
25. Hastie E, Cataldi M, Marriott I, Grdzelishvili VZ. Understanding and altering cell tropism of vesicular stomatitis virus. Virus Research. 2013; 176(1-2): 16-32. [DOI:10.1016/j.virusres.2013.06.003]
26. González-Jara P, Fraile A, Canto T, García-Arenal F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. Journal of Virology. 2009; 83(15): 7487-94. [DOI:10.1128/JVI.00636-09]
27. Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World Journal of Virology. 2016; 5(2): 85. [DOI:10.5501/wjv.v5.i2.85]
28. Wickramasinghe S, Kalbfuss B, Zimmermann A, Thom V, Reichl U. Tangential flow microfiltration and ultrafiltration for human influenza A virus concentration and purification. Biotechnology and Bioengineering. 2005; 92(2): 199-208. [DOI:10.1002/bit.20599]
29. de Jonge J, Schoen P, Stegmann T, Wilschut J, Huckriede A. Use of a dialyzable short-chain phospholipid for efficient solubilization and reconstitution of influenza virus envelopes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2006; 1758(4): 527-36. [DOI:10.1016/j.bbamem.2006.03.011]
30. Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry. 1977; 83(2): 346-56. [DOI:10.1016/0003-2697(77)90043-4]
31. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983; 65(1-2): 55-63. [DOI:10.1016/0022-1759(83)90303-4]
32. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259): 680-5. [DOI:10.1038/227680a0]
33. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nature Reviews Genetics. 2014; 15(8): 541-55. [DOI:10.1038/nrg3763]
34. Boulaiz H, Marchal JA, Prados J, Melguizo C, Aranega A. Non-viral and viral vectors for gene therapy. Cellular and Molecular Biology (Noisy-le-Grand, France). 2005; 51(1): 3-22.
35. Li SD, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Therapy. 2006; 13(18): 1313-9. [DOI:10.1038/sj.gt.3302838]
36. Baum C, Schambach A, Bohne J, Galla M. Retrovirus vectors: toward the plentivirus? Molecular Therapy. 2006; 13(6): 1050-63. [DOI:10.1016/j.ymthe.2006.03.007]
37. Li C, Bowles DE, van Dyke T, Samulski RJ. Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Therapy. 2005; 12(12): 913-25. [DOI:10.1038/sj.cgt.7700876]
38. Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. The Journal of Pathology. Journal of Pathology. 2006; 208(2): 299-318. [DOI:10.1002/path.1896]
39. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. Journal of Biological Chemistry. 1995; 270(32): 18997-9007. [DOI:10.1074/jbc.270.32.18997]
40. Paternostre M, Viard M, Meyer O, Ghanam M, Ollivon M, Blumenthal R. Solubilization and reconstitution of vesicular stomatitis virus envelope using octylglucoside. Biophysical Journal. 1997; 72(4): 1683-94. [DOI:10.1016/S0006-3495(97)78814-3]
41. Carneiro FA, Bianconi ML, Weissmüller G, Stauffer F, Da Poian AT. Membrane recognition by vesicular stomatitis virus involves enthalpy-driven protein-lipid interactions. Journal of Virology. 2002; 76(8): 3756-64. [DOI:10.1128/JVI.76.8.3756-3764.2002]
42. Paternostre MT, Lowy RJ, Blumenthal R. pH‐dependent fusion of reconstituted vesicular stomatitis virus envelopes with vero cells Measurement by dequenching of fluorescence. FEBS Letters. 1989; 243(2): 251-8. [DOI:10.1016/0014-5793(89)80139-5]
43. Schoen P, Chonn A, Cullis P, Wilschut J, Scherrer P. Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles. Gene Therapy. 1999; 823-32. [DOI:10.1038/sj.gt.3300919]
44. de Jonge J, Holtrop M, Wilschut J, Huckriede A. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs. Gene Therapy. 2006; 13(5): 400. [DOI:10.1038/sj.gt.3302673]
45. Ge P, Tsao J, Schein S, Green TJ, Luo M, Zhou ZH. Cryo-EM model of the bullet-shaped vesicular stomatitis virus. Science. 2010; 327(5966): 689-93. [DOI:10.1126/science.1181766]
46. Coil DA, Miller AD. Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. Journal of Virology. 2004; 78(20): 10920-6. [DOI:10.1128/JVI.78.20.10920-10926.2004]
47. Dobrzyńska I, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z. Changes in electric charge and phospholipids composition in human colorectal cancer cells. Molecular and Cellular Biochemistry. 2005; 276(1-2): 113-9. [DOI:10.1007/s11010-005-3557-3]
48. Jiang C, Koyabu N, Yonemitsu Y, Shimazoe T, Watanabe S, Naito M, et al. In vivo delivery of glial cell-derived neurotrophic factor across the blood-brain barrier by gene transfer into brain capillary endothelial cells. Human Gene Therapy. 2003; 14(12): 1181-91. [DOI:10.1089/104303403322168019]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi D, Zargar M, Zolfaghari M R, Kazemimanesh M, Ghaemi A. Construction of Cationic Virosome Derived from Vesicular Stomatitis Virus as a Promising Candidate for Efficient Gene Delivery to the Central Nervous System. Shefaye Khatam. 2020; 8 (2) :72-81
URL: http://shefayekhatam.ir/article-1-2071-en.html

Volume 8, Issue 2 (Spring 2020) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 32 queries by YEKTAWEB 4140