[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
:: دوره 9، شماره 1 - ( زمستان 1399 ) ::
دوره 9 شماره 1 صفحات 110-119 برگشت به فهرست نسخه ها
پیش‌بینی تشنج صرعی از روی ویژگی‌های طیفی، زمانی و مکانی سیگنال‌های نوار مغزی با استفاده از الگوریتم‌های یادگیری عمیق
نازنین محمد خانی غیاثوند، فؤاد قادری*
آزمایشگاه تعامل انسان و کامپیوتر، دانشکده مهندسی برق و کامپیوتر، دانشگاه تربیت مدرس، تهران، ایران ، fghaderi@modares.ac.ir
چکیده:   (218 مشاهده)
مقدمه: صرع یکی از شایع‌ترین اختلالات دستگاه عصبی است که به میزان زیادی زندگی بیماران را تحت تاثیر قرار می‌دهد. تشخیص زودهنگام حملات صرعی، تأثیر زیادی بر کیفیت زندگی بیماران خواهد گذاشت. در این پژوهش، یک معماری با ساختار شبکه عصبی عمیق برای یادگیری ویژگی‌های ارزشمند از سیگنال‌های نوار مغزی (EEG) به منظور تشخیص و همچنین پیش‌بینی تشنج‌های صرعی ارائه شده است. مواد و روش‌ها: معماری ارائه‌شده متشکل از شبکه‌های عصبی پیچشی و حافظۀ طولانی کوتاه-مدت است و به نحوی طراحی شده است که  داده‌های مکانی، زمانی و طیفی سیگنال‌های EEG را به کار ببندد. علاوه بر این، شبکه طراحی‌شده بر روش‌های انتخاب صریح الکترودها تکیه ندارد. مدل ارائه شده روی مجموعه داده بیمارستان کودکان بوستون-مؤسسه فناوری ماساچوست (CHB-MIT) بکار بسته شده است. به منظور ارزیابی مدل، از رویکرد ارزیابی مختص بیمار (Patient-Specific) استفاده شده است. یافته‌ها: حساسیت معماری در پیش‌بینی تشنج برابر با 7/9 ± 90/7،  نرخ پیش‌بینی اشتباه تشنج برابر با 0/12 در ساعت و میانگین مدت زمان پیش‌بینی تشنج تا وقوع تشنج برابر با 36/8 دقیقه به ‏دست آمد. همچنین مدل ارائه‌شده ناحیۀ کانون تشنج (در تشنج‌های کانونی) را نیز تخمین می‌زند. نتیجه‌گیری: مدل ارائه‌شده به توانایی بالایی در پیش‌بینی تشنج دست یافت. همچنین با استفاده از قابلیت استخراج خودکار ویژگی‌ها در یادگیری عمیق، الگوی سیگنال‌ها دربازۀ پیش از تشنج با دقت مناسبی تعیین شدند. به ‏علاوه، مدل بوسیلۀ تخمین ناحیۀ کانون تشنج، می‌تواند متخصصان اعصاب را در اقدامات درمانی مرتبط یاری نماید.
واژه‌های کلیدی: بیماران، یادگیری عمیق، نوار مغز
متن کامل [PDF 997 kb]   (105 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: نورولوژی


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadkhani Ghiasvand N, Ghaderi F. Epileptic Seizure Prediction from Spectral, Temporal, and Spatial Features of EEG Signals Using Deep Learning Algorithms. Shefaye Khatam. 2020; 9 (1) :110-119
URL: http://shefayekhatam.ir/article-1-2108-fa.html

محمد خانی غیاثوند نازنین، قادری فؤاد. پیش‌بینی تشنج صرعی از روی ویژگی‌های طیفی، زمانی و مکانی سیگنال‌های نوار مغزی با استفاده از الگوریتم‌های یادگیری عمیق. مجله علوم اعصاب شفای خاتم. 1399; 9 (1) :110-119

URL: http://shefayekhatam.ir/article-1-2108-fa.html



دوره 9، شماره 1 - ( زمستان 1399 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4280