[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 8, Issue 3 (Summer - 2020) ::
Shefaye Khatam 2020, 8(3): 97-110 Back to browse issues page
Cellular and Molecular Mechanisms of Vitamin D Deficiency in Aging and Alzheimer’s Disease
Shiler Khaledi, Shamseddin Ahmadi *
Department of Biological Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran , sh.ahmadi@uok.ac.ir
Abstract:   (266 Views)
Introduction: Vitamin D is implicated in regulation of various biological processes, including calcium homeostasis, neurogenesis, synaptic plasticity, the immune system, and inflammation. Nowadays, most part of the population worldwide is affected by vitamin D deficiency. The decreases in different factors, including the cutaneous thickness, the sun exposure time, muscle mass, kidney efficiency, and sex steroids in aged people (especially women), as well as malnutrition cause vitamin D deficiency, which in turn may act as an important risk factor for Alzheimer’s disease (AD). There is a reciprocal relationship between amyloid β (Aβ) as a core factor that initiates the onset and progression of AD and the increases in calcium (Ca2+) levels in neurons. Vitamin D via genomic functions, including either a decreasing expression of L-type Ca2+ channels or increasing expression of Ca2+ pumps, Na+/Ca2+ exchanger, as well as Ca2+ buffers, has the main role in Ca2+ homeostasis. Therefore, vitamin D through influencing intracellular Ca2+ can prevent Aβ production and inhibit its subsequent neurotoxic effects. It also indirectly controls neuroinflammation and oxidative stress via influencing intracellular Ca2+ levels and thereby postpone either onset or progress of AD. Conclusion: Taken together, this review shows that vitamin D can control the normal process of physiological aging, and its deficiency may initiate AD by disrupting different cellular and molecular mechanisms in the neural system. Therefore, vitamin D as a food and drug supplement along with other effective drugs may have a preventive role in the induction and progression of AD. 
Keywords: Cholecalciferol, Amyloid beta-Peptides, Calcium Signaling, Memory Disorders
Full-Text [PDF 1029 kb]   (60 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
1. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. American Journal of physiology Renal Physiology. 2005; 289(1): F8-28. [DOI:10.1152/ajprenal.00336.2004]
2. Berridge MJ. Vitamin D, reactive oxygen species and calcium signalling in ageing and disease. Philos Trans R Soc Lond B Biol Sci. 2016; 371 (1700): doi: 10.1098/rstb.2015.0434. [DOI:10.1098/rstb.2015.0434]
3. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017; 18(2): 153-65. [DOI:10.1007/s11154-017-9424-1]
4. Bivona G, Agnello L, Bellia C, Iacolino G, Scazzone C, Lo Sasso B, et al. Non-skeletal activities of vitamin d: from physiology to brain pathology. Medicina (Kaunas). 2019; 55(7): 341. doi: 10.3390/medicina55070341. [DOI:10.3390/medicina55070341]
5. van Schoor NM, Lips P. Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab. 2011; 25(4): 671-80. [DOI:10.1016/j.beem.2011.06.007]
6. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med. 2012; 2(8): doi: 10.1101/cshperspect.a006239. [DOI:10.1101/cshperspect.a006239]
7. Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet. 2010; 19 (R1): R12-20. [DOI:10.1093/hmg/ddq160]
8. Dursun E, Gezen-Ak D. Vitamin D basis of Alzheimer's disease: from genetics to biomarkers. Hormones. 2019; 18(1): 7-15. [DOI:10.1007/s42000-018-0086-5]
9. Hill TR, Granic A, Aspray TJ. Vitamin D and ageing. Sub-Cellular Biochemistry. 2018; 90: 191-220. [DOI:10.1007/978-981-13-2835-0_8]
10. Annweiler C, Brugg B, Peyrin JM, Bartha R, Beauchet O. Combination of memantine and vitamin D prevents axon degeneration induced by amyloid-beta and glutamate. Neurobiol Aging. 2014; 35(2): 331-5. [DOI:10.1016/j.neurobiolaging.2013.07.029]
11. Littlejohns TJ, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PHM, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology. 2014; 83(10): 920-8. [DOI:10.1212/WNL.0000000000000755]
12. Chen H, Xue W, Li J, Fu K, Shi H, Zhang B, et al. 25-hydroxyvitamin D levels and the risk of dementia and Alzheimer's disease: A dose-response meta-analysis. Front Aging Neurosci. 2018; 10: 368. [DOI:10.3389/fnagi.2018.00368]
13. Fleet JC. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol Cell Endocrinol. 2017; 453: 36-45. [DOI:10.1016/j.mce.2017.04.008]
14. Annweiler C, Rolland Y, Schott AM, Blain H, Vellas B, Beauchet O. Serum vitamin D deficiency as a predictor of incident non-Alzheimer dementias: a 7-year longitudinal study. Dement Geriatr Cogn Disord. 2011; 32(4): 273-8. [DOI:10.1159/000334944]
15. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016; 96(1): 365-408. [DOI:10.1152/physrev.00014.2015]
16. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006; 92(1): 4-8. [DOI:10.1016/j.pbiomolbio.2006.02.016]
17. Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013; 92(2): 77-98. [DOI:10.1007/s00223-012-9619-0]
18. Medrano M, Carrillo-Cruz E, Montero I, Perez-Simon JA. Vitamin D: effect on haematopoiesis and immune system and clinical applications. Int J Mol Sci. 2018; 19(9): 2663. [DOI:10.3390/ijms19092663]
19. Cashman KD, van den Heuvel EG, Schoemaker RJ, Preveraud DP, Macdonald HM, Arcot J. 25-hydroxyvitamin D as a biomarker of vitamin D status and its modeling to inform strategies for prevention of vitamin D deficiency within the population. Adv Nutr. 2017; 8(6): 947-57. [DOI:10.3945/an.117.015578]
20. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.
21. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012; 523(1): 123-33. [DOI:10.1016/j.abb.2012.04.001]
22. McGrath J, Feron F, Eyles D, Mackay-Sim A. Vitamin D: the neglected neurosteroid? Trends in Neurosciences. 2001; 24(10): 570-2. [DOI:10.1016/S0166-2236(00)01949-4]
23. Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun. 2015; 460(1): 53-71. [DOI:10.1016/j.bbrc.2015.01.008]
24. Berridge MJ. Vitamin D deficiency accelerates ageing and age-related diseases: a novel hypothesis. J Physiol. 2017; 595 (22): 6825-36. [DOI:10.1113/JP274887]
25. Chen J, Olivares-Navarrete R, Wang Y, Herman TR, Boyan BD, Schwartz Z. Protein-disulfide isomerase-associated 3 (Pdia3) mediates the membrane response to 1,25-dihydroxyvitamin D3 in osteoblasts. J Biol Chem. 2010; 285(47): 37041-50. [DOI:10.1074/jbc.M110.157115]
26. Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling M. Multiple actions of steroid hormones--a focus on rapid, nongenomic effects. Pharmacological Reviews. 2000; 52(4): 513-56.
27. Cui X, Gooch H, Petty A, McGrath JJ, Eyles D. Vitamin D and the brain: Genomic and non-genomic actions. Mol Cell Endocrinol. 2017; 453: 131-43. [DOI:10.1016/j.mce.2017.05.035]
28. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010; 10(4): 482-96. [DOI:10.1016/j.coph.2010.04.001]
29. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat. 2005; 29(1): 21-30. [DOI:10.1016/j.jchemneu.2004.08.006]
30. Balabanova S, Richter HP, Antoniadis G, Homoki J, Kremmer N, Hanle J, et al. 25-Hydroxyvitamin D, 24, 25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D in human cerebrospinal fluid. Klin Wochenschr. 1984; 62(22): 1086-90. [DOI:10.1007/BF01711378]
31. Wrzosek M, Lukaszkiewicz J, Wrzosek M, Jakubczyk A, Matsumoto H, Piatkiewicz P, et al. Vitamin D and the central nervous system. Pharmacol Rep. 2013; 65(2): 271-8. [DOI:10.1016/S1734-1140(13)71003-X]
32. Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F. Vitamin D3 and brain development. Neuroscience. 2003; 118(3): 641-53. [DOI:10.1016/S0306-4522(03)00040-X]
33. Groves NJ, McGrath JJ, Burne TH. Vitamin D as a neurosteroid affecting the developing and adult brain. Annu Rev Nutr. 2014; 34: 117-41. [DOI:10.1146/annurev-nutr-071813-105557]
34. Morello M, Landel V, Lacassagne E, Baranger K, Annweiler C, Feron F, et al. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer's disease. Mol Neurobiol. 2018; 55(8): 6463-79. [DOI:10.1007/s12035-017-0839-1]
35. Miller BJ, Whisner CM, Johnston CS. Vitamin D supplementation appears to increase plasma abeta40 in vitamin D insufficient older adults: a pilot randomized controlled trial. J Alzheimers Dis. 2016; 52(3): 843-7. [DOI:10.3233/JAD-150901]
36. Khaledi S, Ahmadi S. Amyloid beta and tau: from physiology to pathology in Alzheimer's disease. Shefaye Khatam. 2016; 4(4): 67-88. [DOI:10.18869/acadpub.shefa.4.4.67]
37. Keisala T, Minasyan A, Lou YR, Zou J, Kalueff AV, Pyykko I, et al. Premature aging in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol. 2009; 115(3-5): 91-7. [DOI:10.1016/j.jsbmb.2009.03.007]
38. Oliveira AM, Bading H, Mauceri D. Dysfunction of neuronal calcium signaling in aging and disease. Cell Tissue Res. 2014; 357(2): 381-3. [DOI:10.1007/s00441-014-1954-1]
39. Brawek B, Garaschuk O. Network-wide dysregulation of calcium homeostasis in Alzheimer's disease. Cell Tissue Res. 2014; 357(2): 427-38. [DOI:10.1007/s00441-014-1798-8]
40. Wang Y, Shi Y, Wei H. Calcium dysregulation in Alzheimer's disease: A target for new drug development. J Alzheimers Dis Parkinsonism. 2017; 7 (5): 374. doi: 10.4172/2161-0460.1000374. [DOI:10.4172/2161-0460.1000374]
41. Ahmadi S, Zobeiri M, Bradburn S. Molecular mechanisms underlying actions of certain long noncoding RNAs in Alzheimer's disease. Metab Brain Dis. 2020; 35(5): 681-93. [DOI:10.1007/s11011-020-00564-9]
42. Koduah P, Paul F, Dorr JM. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J. 2017; 8(4): 313-25. [DOI:10.1007/s13167-017-0120-8]
43. Mayne PE, Burne THJ. Vitamin D in synaptic plasticity, cognitive function, and neuropsychiatric illness. Trends Neurosci. 2019; 42(4): 293-306. [DOI:10.1016/j.tins.2019.01.003]
44. Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. J Neuroinflammation. 2018; 15 (1): 276. doi: 10.1186/s12974-018-1313-3. [DOI:10.1186/s12974-018-1313-3]
45. Anastasiou CA, Yannakoulia M, Scarmeas N. Vitamin D and cognition: an update of the current evidence. J Alzheimers Dis. 2014; 42(3): S71-80. [DOI:10.3233/JAD-132636]
46. Rong Y, Distelhorst CW. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol. 2008; 70: 73-91. [DOI:10.1146/annurev.physiol.70.021507.105852]
47. Annweiler C. Vitamin D in dementia prevention. Annals of the New York Academy of Sciences. 2016; 1367(1): 57-63. [DOI:10.1111/nyas.13058]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khaledi S, Ahmadi S. Cellular and Molecular Mechanisms of Vitamin D Deficiency in Aging and Alzheimer’s Disease. Shefaye Khatam. 2020; 8 (3) :97-110
URL: http://shefayekhatam.ir/article-1-2127-en.html

Volume 8, Issue 3 (Summer - 2020) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 32 queries by YEKTAWEB 4215