[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
:: Volume 8, Issue 4 (Autumn 2020) ::
Shefaye Khatam 2020, 8(4): 1-11 Back to browse issues page
The Effect of Hesperidin on the Cognitive-Behavioral Deficit in a Rat Model of Pentylenetetrazole-Induced Perinatal Seizures
Habibollah Khodabandeh, Shaghayegh Keshavarzi, Pariya Moradian, Mohammad Amin Edalatmanesh *
Department of Biology, Facultyof Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran , amin.edalatmanesh@gmail.com
Abstract:   (607 Views)
Introduction: Perinatal seizure with inducing oxidative stress causes serious damage to the fetal central nervous system and leads to cognitive-behavioral deficits. This study evaluates the effect of Hesperidin (HES) on cognitive and behavioral deficits in rats following perinatal seizures. Materials and Method: 30 Wistar pregnant rats were randomly divided into 5 groups: control, pentylenetetrazole (PTZ) + NS, PTZ + HES 25, PTZ + HES50, and PTZ + HES 100. Animals were treated with repeated PTZ administration (40 mg/kg, intraperitoneally) from gestation day 14 for 5 consecutive days. Two hours before PTZ injection, the PTZ+NS group and the PTZ+HES groups were gavaged with either normal saline or HES (25, 50, or 100 mg/kg), respectively. The severity of seizure, delay in onset of a seizure in mothers, working and avoidance memory, and anxiety-like behaviors were assessed in one-month-old male infants. Results: A significant increase in seizure severity and a decrease in seizure delay were seen in PTZ-treated mothers. On the other hand, a significant decrease in behavior changes, avoidance memory, and hippocampal cell density was observed with increased anxiety levels in the infant of the PTZ+NS group compared to the control rats. However, HES-treated groups showed a significant increase in working and passive avoidance memory with a decreasing level of anxiety compared to the PTZ+NS group. Conclusion: HES has anticonvulsant, anxiolytic, and memory-enhancing effects in the perinatal seizures in rats.
Keywords: Seizures, Pregnancy, Cognition, Rats
Full-Text [PDF 993 kb]   (145 Downloads)    
Type of Study: Research --- Open Access, CC-BY-NC | Subject: Basic research in Neuroscience
1. Walker MC. Pathophysiology of status epilepticus. Neurosci Lett. 2018; 667: 84-91. [DOI:10.1016/j.neulet.2016.12.044]
2. Naseer MI, Lee HY, Ullah N, Ullah I, Park MS, Kim SH, et al. Ethanol and PTZ effects on siRNA-mediated GABAB1 receptor: down regulation of intracellular signaling pathway in prenatal rat cortical and hippocampal neurons. Synapse. 2010; 64(3): 181-90. [DOI:10.1002/syn.20712]
3. Naseer MI, Shupeng L, Kim MO. Maternal epileptic seizure induced by pentylenetetrazol: apoptotic neurodegeneration and decreased GABAB1 receptor expression in prenatal rat brain. Mol Brain. 2009; 2: 20. [DOI:10.1186/1756-6606-2-20]
4. Corvino V, Marchese E, Michetti F, Geloso MC. Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res. 2013; 38(2): 240-53. [DOI:10.1007/s11064-012-0932-9]
5. Fujimura K, Mitsuhashi T, Takahashi T. Adverse effects of prenatal and early postnatal exposure to anyiepileptic drugs: Validation from clinical and basic researches. Brain Dev. 2017; 39(8): 635-43. [DOI:10.1016/j.braindev.2017.03.026]
6. Davidson L, Derry C. Seizure classification key to epilepsy management. Practitioner. 2015; 259(1785): 13-9.
7. Jia P, Ewers JM, Zhao Z. Prioritization of epilepsy associated candidate genes by convergent analysis. PLoS One. 2011; 6(2): 17162. doi: 10.1371/journal.pone.0017162. [DOI:10.1371/journal.pone.0017162]
8. Yerby MS. Special considerations for women with epilepsy. Pharmacotherapy. 2000; 20(8): 159S-170S. [DOI:10.1592/phco.20.12.159S.35249]
9. Singh KP, Verma N. Teratogenic potential of third-generation antiepileptic drugs: Current status and research needs. Pharmacol Rep. 2019; 71(3): 491-502. [DOI:10.1016/j.pharep.2019.01.011]
10. Holmes GL, Harden C, Liporace J, Gordon J. Postnatal concerns in children born to women with epilepsy. Epilepsy Behav. 2007; 11(3): 270-6. [DOI:10.1016/j.yebeh.2007.08.022]
11. Bromley RL, Baker GA. Fetal antiepileptic drug exposure and cognitive outcomes. Seizure. 2017; 44: 225-31. [DOI:10.1016/j.seizure.2016.10.006]
12. Borthen I, Gilhus NE. Pregnancy complications in patients with epilepsy. Curr Opin Obstet Gynecol. 2012; 24(2): 78-83. [DOI:10.1097/GCO.0b013e32834feb6a]
13. De Almeida AA, SG Da Silva, GM Lopim, DV Campos, J Fernandes. Resistance exercise reduces seizure occurrence, attenuates memory deficits and restores BDNF signaling in rats with chronic epilepsy. Neurochem Res. 2017; 42(4): 1230-9. [DOI:10.1007/s11064-016-2165-9]
14. Ahmadi A, Hossinimehr SJ, Naghshvar F, Hajir E, Ghahremani M. Chermoprotective effects of hesperidin against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Arch Pharm Res. 2008; 31(6): 794-7. [DOI:10.1007/s12272-001-1228-z]
15. Garg A, Garg S, Zaneveld L, Singla A. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res. 2001; 15(8): 655-69. [DOI:10.1002/ptr.1074]
16. Cho J. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch Pharm Res. 2006; 29(8): 699-706. [DOI:10.1007/BF02968255]
17. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015; 29(3): 323-31. [DOI:10.1002/ptr.5256]
18. Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci. 2018; 128(11): 1086-96. [DOI:10.1080/00207454.2018.1481064]
19. Edalatmanesh MA, Amooei K. The lithium effect on learning and memory deficits and hippocampal level of BDNF in prenatal seizure kindled rats. J Fasa Univ Med Sci. 2019; 8(4): 1088-96.
20. Haggag BS, Hasanin AM, Raafat MH, Abdel Kawy HS. Lamotrigine decreased hippocampal damage and improved vascular risk markers in a rat model of pentylenetetrazole induced kindling seizure. Korean J Physiol Pharmacol. 2014; 18(3): 269-78. [DOI:10.4196/kjpp.2014.18.3.269]
21. Bagha N, Edalatmanesh MA. Effectiveness of erythropoietin on working memory, passive avoidance learning and anxiety- like behaviors in prenatal food restriction model. Rep Health Care. 2018; 4(1): 36-43.
22. Moghadas M, Edalatmanesh MA, Robati R. Histopathological analysis from gallic acid administration on hippocampal cell density, depression, and anxiety related behaviors in a trimethyl tin intoxication model. Cell J. 2016; 17(4): 659-67.
23. Naseer MI, Lee HY, Ullah N, Ullah I, Park MS, Kim SH, et al. Ethanol and PTZ effects on siRNA-mediated GABAB1 receptor: down regulation of intracellular signaling pathway in prenatal rat cortical and hippocampal neurons. Synapse. 2010; 64(3): 181-90. [DOI:10.1002/syn.20712]
24. Zhen JL, Chang YN, Qu ZZ, Fu T, Liu JQ, Wang WP. Luteolin rescues pentylenetetrazole-induced cognitive impairment in epileptic rats by reducing oxidative stress and activating PKA/CREB/BDNF signaling. Epilepsy Behav. 2016; 57(Pt A): 177-84. [DOI:10.1016/j.yebeh.2016.02.001]
25. Pourmotabbed A, Nedaei SE, Cheraghi M, Moradian S, Touhidi A, Aeinfar M, et al. Effect of prenatal pentylenetetrazol-induced kindling on learning and memory of male offspring. Neuroscience. 2011; 172: 205-11 [DOI:10.1016/j.neuroscience.2010.11.001]
26. Huberfeld G, Blauwblomme T, Miles R. Hippocampus and epilepsy: Findings from human tissues. Rev Neurol (Paris). 2015; 171(3): 236-51. [DOI:10.1016/j.neurol.2015.01.563]
27. Postnikova TY, Zubareva OE, Kovalenko AA, Kim KK, Magazanik LG, Zaitsev AV. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry (Mosc). 2017; 82(3): 282-90. [DOI:10.1134/S0006297917030063]
28. Xie T, Wang WP, Jia LJ, Mao ZF, Qu ZZ, Luan SQ, et al. Environmental enrichment restores cognitive deficits induced by prenatal maternal seizure. Brain Res. 2012; 1470: 80-8. [DOI:10.1016/j.brainres.2012.06.034]
29. Lu Y, Wang X, Feng J, Xie T, Si P, Wang W. Neuroprotective effect of astaxanthin on newborn rats exposed to prenatal maternal seizures. Brain Res Bull. 2019; 148: 63-9. [DOI:10.1016/j.brainresbull.2019.03.009]
30. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017; 360(1): 201-5. [DOI:10.1124/jpet.116.237503]
31. Puttachary S, Sharma S, Stark S, Thippeswamy T. Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int. 2015; 2015: 745613. doi: 10.1155/2015/745613. [DOI:10.1155/2015/745613]
32. Pearson-Smith JN, Patel M. Metabolic dysfunction and oxidative stress in Epilepsy. Int J Mol Sci. 2017; 18(11): 2365. doi: 10.3390/ijms18112365. [DOI:10.3390/ijms18112365]
33. Geronzi U, Lotti F, Grosso S. Oxidative stress in epilepsy. Expert Rev Neurother. 2018; 18(5): 427-34. [DOI:10.1080/14737175.2018.1465410]
34. Hajialyani M, Hosein Farzaei M, Echeverría J, Nabavi SM, Uriarte E, Sobarzo-Sánchez E. Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules. 2019; 24(3): 648. [DOI:10.3390/molecules24030648]
35. Oztanir MN, Ciftci O, Cetin A, Aladag MA. Hesperidin attenuates oxidative and neuronal damage caused by global cerebral ischemia/reperfusion in a C57BL/J6 mouse model. Neurol Sci. 2014; 35(9): 1393-9. [DOI:10.1007/s10072-014-1725-5]
36. Poetini MR, Araujo SM, Trindade de Paula M, Bortolotto VC, Meichtry LB, Polet de Almeida F, et al. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson's disease. Chem Biol Interact. 2018; 279: 177-86. [DOI:10.1016/j.cbi.2017.11.018]
37. van Iterson L, de Jong PF. Development of verbal short-term memory and working memory in children with epilepsy: Developmental delay and impact of time-related variables. A cross-sectional study. Epilepsy Behav. 2018; 78: 166-74. [DOI:10.1016/j.yebeh.2017.10.018]
38. Gomes BAQ, Silva JPB, Romeiro CFR, Dos Santos SM, Rodrigues CA, Gonçalves PR, et al. Neuroprotective mechanisms of resveratrol in Alzheimer's disease: role of SIRT1. Oxid Med Cell Longev. 2018; 2018: doi: 10.1155/2018/8152373. [DOI:10.1155/2018/8152373]
39. Hemanth Kumar B, Dinesh Kumar B, Diwan PV. Hesperidin, a citrus flavonoid, protects against l-methionine-induced hyperhomocysteinemia by abrogation of oxidative stress, endothelial dysfunction and neurotoxicity in wistar rats. Pharm Biol. 2017; 55(1): 146-55. [DOI:10.1080/13880209.2016.1231695]
40. Hritcu L, Ionita R, Postu PA, Gupta GK, Turkez H, Lima TC, et al. Antidepressant flavonoids and their relationship with oxidative stress. Oxid Med Cell Longev. 2017; 2017: 5762172. [DOI:10.1155/2017/5762172]
41. Jones C, Reilly C. Parental anxiety in childhood epilepsy: A systematic review. Epilepsia. 2016; 57(4): 529-37. [DOI:10.1111/epi.13326]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khodabandeh H, Keshavarzi S, Moradian P, Edalatmanesh M A. The Effect of Hesperidin on the Cognitive-Behavioral Deficit in a Rat Model of Pentylenetetrazole-Induced Perinatal Seizures. Shefaye Khatam. 2020; 8 (4) :1-11
URL: http://shefayekhatam.ir/article-1-2142-en.html

Volume 8, Issue 4 (Autumn 2020) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 4256