[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله ::
:: دوره 10، شماره 4 - ( پاييز 1401 ) ::
دوره 10 شماره 4 صفحات 91-77 برگشت به فهرست نسخه ها
فاکتورهای درمانی در کنترل سکته مغزی ایسکمیک
میلاد سلوکی، فریبا محمودی، آرش عبدالملکی*
الف. گروه علوم مهندسی، دانشکده فناوری‌های نوین، دانشگاه محقق اردبیلی، نمین، ایران. ب. مرکز پژوهشی علوم زیستی و زیست‌فناوری، دانشگاه فن‌آوری‌های نوین سبلان، نمین، ایران ، abdolmalekiarash1364@gmail.com
چکیده:   (252 مشاهده)
مقدمه: سکته مغزی ایسکمیک علاوه بر محدودیت‌هایی که برای بیمار تحمیل می‌کند، هزینه‌های اقتصادی و اجتماعی بالایی نیز دارد. با وجود تلاش‌های فراوان برای درمان این آسیب‌ها، هنوز بهبودی کامل در بیماران مبتلا به سکته مغزی ایسکمیک حاصل نشده است. سکته مغزی ایسکمیک مجموعه‌ای از وقایع مانند التهاب، افزایش استرس اکسیداتیو و گسترش آسیب را به‌دنبال دارد که می‌تواند منجر به آسیب میتوکندری، تخریب پروتئین و آپوپتوز سلولی شود. هر رویکردی که بتواند سلول‌های عصبی را از آسیب‌های ایسکمیک محافظت کند، می‌تواند روند بهبودی را ارتقا بخشد. یکی از این روش‌ها استفاده از فاکتورهای درون سلولی در درمان سکته مغزی است که می‌تواند مسیرهای سلولی مختلف مانند آپوپتوز، تقسیم و سایر مسیرها را کنترل کند. نتیجه‌گیری: در این مقاله به نقش برخی عوامل دخیل در بهبود روند سکته مغزی ایسکمیک و راهکارهای درمان با این عوامل پرداخته شده است.
واژه‌های کلیدی: دستگاه عصبی مرکزی، سکتۀ مغزی، فاکتورهای رشد عصبی، هورمون رشد
متن کامل [PDF 494 kb]   (72 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: ترميم عصبي
فهرست منابع
1. Tapeinos C, Battaglini M, Marino A, Ciofani G. Smart diagnostic nano- agents for cerebral ischemia. Journal of Materials Chemistry B. 2020; 8(29): 6233-51. [DOI:10.1039/D0TB00260G]
2. Members WG, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016; 133(4): e38-e360.
3. Soluki M, Mahmoudi F, Abdolmaleki A, Asadi A, Sabahi Namini A. Cerium oxide nanoparticles as a new neuroprotective agent to promote functional recovery in a rat model of sciatic nerve crush injury. British Journal of Neurosurgery. 2020: 1-6. [DOI:10.1080/02688697.2020.1864292]
4. Lee HI, Lee SW, Kim NG, Park KJ, Choi BT, Shin YI, et al. Low‐level light emitting diode (LED) therapy suppresses inflammasome‐mediated brain damage in experimental ischemic stroke. Journal of biophotonics. 2017; 10(11): 1502-13. [DOI:10.1002/jbio.201600244]
5. Karu TI. Photobiology of low-power laser therapy: Routledge; 2020. [DOI:10.4324/9781003077282]
6. Thunshelle C, Hamblin MR. Transcranial low-level laser (light) therapy for brain injury. Photomedicine and laser surgery. 2016; 34(12): 587-98. [DOI:10.1089/pho.2015.4051]
7. Kim Y, Lee YB, Bae SK, Oh SS, Choi J-r. Development of a photochemical thrombosis investigation system to obtain a rabbit ischemic stroke model. Scientific reports. 2021; 11(1): 1-12. [DOI:10.1038/s41598-021-85348-6]
8. Oron A, Oron U. Low-level laser therapy to the bone marrow: a new therapeutic approach to neurodegenerative diseases. Photobiomodulation in the Brain: Elsevier; 2019. p. 213-7. [DOI:10.1016/B978-0-12-815305-5.00016-6]
9. Su EJ, Cao C, Fredriksson L, Nilsson I, Stefanitsch C, Stevenson TK, et al. Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke. Acta neuropathologica. 2017; 134(4): 585-604. [DOI:10.1007/s00401-017-1749-z]
10. Castilla-Cortázar I, Aguirre GA, Femat-Roldán G, Martín-Estal I, Espinosa L. Is insulin-like growth factor-1 involved in Parkinson's disease development? Journal of translational medicine. 2020; 18(1): 1-17. [DOI:10.1186/s12967-020-02223-0]
11. Kim B, Elzinga SE, Henn RE, McGinley LM, Feldman EL. The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer's disease. Neurobiology of disease. 2019; 132: 104541. [DOI:10.1016/j.nbd.2019.104541]
12. Ashpole NM, Sanders JE, Hodges EL, Yan H, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging brain. Experimental gerontology. 2015; 68: 76-81. [DOI:10.1016/j.exger.2014.10.002]
13. Shaheen H, Sobhy S, El Mously S, Niazi M, Gomaa M. Insulin-like growth factor-1 in acute ischemic stroke. The Egyptian journal of neurology, psychiatry and neurosurgery. 2018; 54(1): 1-5. [DOI:10.1186/s41983-018-0042-y]
14. Kaplan RC, McGinn AP, Pollak MN, Kuller LH, Strickler HD, Rohan TE, et al. Association of total insulin-like growth factor-I, insulin-like growth factor binding protein-1 (IGFBP-1), and IGFBP-3 levels with incident coronary events and ischemic stroke. The journal of clinical endocrinology & metabolism. 2007; 92 (4) 1319-25. [DOI:10.1210/jc.2006-1631]
15. Salem L, Saleh N, Désaméricq G, Youssov K, Dolbeau G, Cleret L, et al. Insulin-like growth factor-1 but not insulin predicts cognitive decline in Huntington's disease. PLoS One. 2016; 11(9): e0162890. [DOI:10.1371/journal.pone.0162890]
16. Serhan A, Boddeke E, Kooijman R. Insulin-like growth factor-1 is neuroprotective in aged rats with ischemic stroke. Frontiers in aging neuroscience. 2019; 11: 349. [DOI:10.3389/fnagi.2019.00349]
17. Higashi Y, Sukhanov S, Shai S-Y, Danchuk S, Tang R, Snarski P, et al. Insulin-like growth factor-1 receptor deficiency in macrophages accelerates atherosclerosis and induces an unstable plaque phenotype in apolipoprotein E-deficient mice. Circulation. 2016; 133(23): 2263-78. [DOI:10.1161/CIRCULATIONAHA.116.021805]
18. Báez-Díaz C, Blanco- Blázquez V, Sánchez-Margallo F-M, Bayes-Genis A, González I, Abad A, et al. Microencapsulated Insulin- Like Growth Factor-1 therapy improves cardiac function and reduces fibrosis in a porcine acute myocardial infarction model. Scientific reports. 2020; 10(1): 1-11. [DOI:10.1038/s41598-020-64097-y]
19. Sohrabji F. Estrogen- IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Frontiers in neuroendocrinology. 2015; 36: 1-14. [DOI:10.1016/j.yfrne.2014.05.003]
20. Hayes CA, Valcarcel- Ares MN, Ashpole NM. Preclinical and clinical evidence of IGF-1 as a prognostic marker and acute intervention with ischemic stroke. Journal of Cerebral Blood Flow & Metabolism. 2021. [DOI:10.1177/0271678X211000894]
21. Lee J, Lee J, Lee M, Lim J-S, Kim JH, Yu K-H, et al. Association between Serum Insulin-Like Growth Factor-1 and Neurological Severity in Acute Ischemic Stroke. Journal of clinical neurology (Seoul, Korea). 2021; 17(2): 206. [DOI:10.3988/jcn.2021.17.2.206]
22. Gong P, Zou Y, Zhang W, Tian Q, Han S, Xu Z, et al. The Neuroprotective Effects of Insulin- Like Growth Factor 1 via the Hippo/YAP Signaling Pathway is Mediated by the PI3K/AKT Pathway Following Cerebral Ischemia-Reperfusion Injury. 2021. [DOI:10.21203/rs.3.rs-187237/v1]
23. Okoreeh AK, Bake S, Sohrabji F. Astrocyte‐specific insulin‐like growth factor‐1 gene transfer in aging female rats improves stroke outcomes. Glia. 2017; 65(7): 1043-58. [DOI:10.1002/glia.23142]
24. Saber H, Himali JJ, Beiser AS, Shoamanesh A, Pikula A, Roubenoff R, et al. Serum insulin-like growth factor 1 and the risk of ischemic stroke: the Framingham study. Stroke. 2017; 48(7): 1760-5. [DOI:10.1161/STROKEAHA.116.016563]
25. Lioutas V-A, Alfaro-Martinez F, Bedoya F, Chung C-C, Pimentel DA, Novak V. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Translational stroke research. 2015; 6(4): 264-75. [DOI:10.1007/s12975-015-0409-7]
26. Higashi Y, Gautam S, Delafontaine P, Sukhanov S. IGF-1 and cardiovascular disease. Growth Hormone & IGF Research. 2019; 45: 6-16. [DOI:10.1016/j.ghir.2019.01.002]
27. Zhang H, Liu Y, Cheng L, Ma X, Luo X. Exendin-4 induces a novel extended effect of ischemic tolerance via crosstalk with IGF-1R. Brain Research Bulletin. 2021; 169: 145-55. [DOI:10.1016/j.brainresbull.2020.11.008]
28. Kang H-M, Byeon E, Jeong H, Kim M-S, Chen Q, Lee J-S. Different effects of nano-and microplastics on oxidative status and gut microbiota in the marine medaka Oryzias melastigma. Journal of hazardous materials. 2021; 405: 124207. [DOI:10.1016/j.jhazmat.2020.124207]
29. Bake S, Okoreeh A, Khosravian H, Sohrabji F. Insulin-like Growth Factor (IGF)-1 treatment stabilizes the microvascular cytoskeleton under ischemic conditions. Experimental neurology. 2019; 311: 162-72. [DOI:10.1016/j.expneurol.2018.09.016]
30. Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and neuroregenerative effects of GH/IGF1. International journal of molecular sciences. 2017; 18(11): 2441. [DOI:10.3390/ijms18112441]
31. Wan Y, Gao W, Zhou K, Liu X, Zheng P, Xue R, et al. Role of IGF-1 in Neuroinflammation and Cogniton Deficits Induced by Sleep Deprivation. 2021. [DOI:10.21203/rs.3.rs-680306/v1]
32. Kreber LA, Ashley MJ, Masel BE, Singh CK, Randle KD, Johnson C, et al. Prevalence of growth hormone deficiency in middle-age adults recovering from stroke. Brain injury. 2020; 34(2): 276-80. [DOI:10.1080/02699052.2019.1682195]
33. Yeap BB, Hui J, Knuiman MW, Paul CS, KY HK, Flicker L, et al. Associations of plasma IGF1, IGFBP3 and estradiol with leucocyte telomere length, a marker of biological age, in men. European journal of endocrinology. 2020; 182(1): 23-33. [DOI:10.1530/EJE-19-0638]
34. George KS, Muñoz J, Akhavan NS, Foley EM, Siebert SC, Tenenbaum G, et al. Is soy protein effective in reducing cholesterol and improving bone health? Food & function. 2020; 11(1): 544-51. [DOI:10.1039/C9FO01081E]
35. Sanchez-Bezanilla S, Åberg ND, Crock P, Walker FR, Nilsson M, Isgaard J, et al. Growth hormone promotes motor function after experimental stroke and enhances recovery-promoting mechanisms within the peri-infarct area. International journal of molecular sciences. 2020; 21(2): 606. [DOI:10.3390/ijms21020606]
36. Xiang Y, Zhang Y, Xia Y, Zhao H, Liu A, Chen Y. LncRNA MEG3 targeting miR-424-5p via MAPK signaling pathway mediates neuronal apoptosis in ischemic stroke. Aging (Albany NY). 2020; 12(4): 3156. [DOI:10.18632/aging.102790]
37. Shishkova V, Adasheva T, Stakhovskaya L, Remennic A, Valyaeva V. Assessment of of twenty-five variants of polymorphic genes for lipid and carbohydrate metabolism, vascular inflammation and the neurotransmitter system in the first non-cardioembolic ischemic stroke. European Heart Journal. 2020; 41(Supplement_2): ehaa946. 2408. [DOI:10.1093/ehjci/ehaa946.2408]
38. Yang L, Wang H, Liu L, Xie A. The role of insulin/IGF-1/PI3K/Akt/GSK3β signaling in Parkinson's disease dementia. Frontiers in neuroscience. 2018; 12: 73. [DOI:10.3389/fnins.2018.00073]
39. Dordoe C, Chen K, Huang W, Chen J, Hu J, Wang X, et al. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Frontiers in Pharmacology. 2021; 12. [DOI:10.3389/fphar.2021.671131]
40. Huang S-S, Huang P-H, Leu H-B, Wu T-C, Chen J-W, Lin S-J. Significance of serum FGF-23 for risk assessment of contrast-associated acute kidney injury and clinical outcomes in patients undergoing coronary angiography. PloS one. 2021; 16(7): e0254835. [DOI:10.1371/journal.pone.0254835]
41. Ucar B, Yusufogullari S, Humpel C. Collagen hydrogels loaded with fibroblast growth factor-2 as a bridge to repair brain vessels in organotypic brain slices. Experimental Brain Research. 2020; 238(11): 2521-9. [DOI:10.1007/s00221-020-05907-7]
42. Fayazzadeh E, Yavarifar H, Rafie SR, Motamed S, Anvari MS, Boroumand MA. Fibroblast growth factor-1 vs. fibroblast growth factor-2 in ischemic skin flap survival in a rat animal model. World journal of plastic surgery. 2016; 5(3): 274.
43. Wang Y, Pan X-F, Liu G-D, Liu Z-H, Zhang C, Chen T, et al. FGF-2 suppresses neuronal autophagy by regulating the PI3K/Akt pathway in subarachnoid hemorrhage. Brain Research Bulletin. 2021; 173: 132-40. [DOI:10.1016/j.brainresbull.2021.05.017]
44. Li S, Lu Y, Ding D, Ma Z, Xing X, Hua X, et al. Fibroblast growth factor 2 contributes to the effect of salidroside on dendritic and synaptic plasticity after cerebral ischemia/reperfusion injury. Aging (Albany NY). 2020; 12(11): 10951. [DOI:10.18632/aging.103308]
45. Celik Y, Resitoglu B, Komur M, Polat A, Erdogan S, Alakaya M, et al. Fibroblast growth factor 2 improves cognitive function in neonatal rats with hypoxic ischaemic brain injury. J Pak Med Assoc. 2016; 66: 549-53.
46. Lin Z, Hu Y, Wang Z, Pan S, Zhang H, Ye L, et al. Intranasal basic fibroblast growth factor attenuates endoplasmic reticulum stress and brain injury in neonatal hypoxic-ischaemic injury. American journal of translational research. 2017; 9(2): 275.
47. Rottlaender A, Villwock H, Addicks K, Kuerten S. Neuroprotective role of fibroblast growth factor‐2 in experimental autoimmune encephalomyelitis. Immunology. 2011; 133(3): 370-8. [DOI:10.1111/j.1365-2567.2011.03450.x]
48. Yu H-H, Li G-G, Tang Y-X, Bai S, Pan C, Tang Z-P. Fractalkine/CX3CR1 pathway is neuroprotective in intracerebral hemorrhage through facilitating the expression of TGF-β1. Brain Hemorrhages. 2020; 1(3): 146-51. [DOI:10.1016/j.hest.2020.06.002]
49. Qin Z, Chen L, Liu M, Tan H, Zheng L. Hesperidin reduces adverse symptomatic intracerebral hemorrhage by promoting TGF-β1 for treating ischemic stroke using tissue plasminogen activator. Neurological Sciences. 2020; 41(1): 139-47. [DOI:10.1007/s10072-019-04054-4]
50. Howe MD, Furr JW, Munshi Y, Roy-O'Reilly MA, Maniskas ME, Koellhoffer EC, et al. Transforming growth factor-β promotes basement membrane fibrosis, alters perivascular cerebrospinal fluid distribution, and worsens neurological recovery in the aged brain after stroke. GeroScience. 2019; 41(5): 543-59. [DOI:10.1007/s11357-019-00118-7]
51. Abdel-Rahman RF, Alqasoumi SI, Ogaly HA, Abd-Elsalam RM, El-Banna HA, Soliman GA. Propolis ameliorates cerebral injury in focal cerebral ischemia/reperfusion (I/R) rat model via upregulation of TGF-β1. Saudi Pharmaceutical Journal. 2020; 28(1): 116-26. [DOI:10.1016/j.jsps.2019.11.013]
52. Rajput R, Chavda V, Patel SS, Barreto GE, Ashraf GM. Efonidipine Exerts Cerebroprotective Effect by Down-regulation of TGF-β/SMAD-2-Dependent Signaling Pathway in Diabetic Rats. Journal of Molecular Neuroscience. 2021: 1-13. [DOI:10.1007/s12031-021-01857-z]
53. Dai X, Chen J, Xu F, Zhao J, Cai W, Sun Z, et al. TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism. 2020; 40(3): 639-55. [DOI:10.1177/0271678X19830791]
54. Leker RR, Toth ZE, Shahar T, Cassiani-Ingoni R, Szalayova I, Key S, et al. Transforming growth factor α induces angiogenesis and neurogenesis following stroke. Neuroscience. 2009; 163(1): 233-43. [DOI:10.1016/j.neuroscience.2009.05.050]
55. Fraser JF, r Pennypacker K. Proteomic changes in intracranial blood during human ischemic stroke. Age (median; range). 64: 24-91.
56. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020; 7(2). [DOI:10.1523/ENEURO.0474-19.2020]
57. Osborne A, Sanderson J, Martin KR. Neuroprotective effects of human mesenchymal stem cells and platelet‐derived growth factor on human retinal ganglion cells. Stem Cells. 2018; 36(1): 65-78. [DOI:10.1002/stem.2722]
58. Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S, et al. A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke. 1997; 28(3): 564-73. [DOI:10.1161/01.STR.28.3.564]
59. Wang Y, Abu-Asab MS, Yu C-R, Tang Z, Shen D, Tuo J, et al. Platelet-derived growth factor (PDGF)-C inhibits neuroretinal apoptosis in a murine model of focal retinal degeneration. Laboratory investigation. 2014; 94(6): 674-82. [DOI:10.1038/labinvest.2014.60]
60. Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S. PDGF/PDGFR axis in the neural systems. Molecular aspects of medicine. 2018; 62: 63-74. [DOI:10.1016/j.mam.2018.01.006]
61. Marushima A, Nieminen M, Kremenetskaia I, Gianni-Barrera R, Woitzik J, von Degenfeld G, et al. Balanced single-vector co-delivery of VEGF/PDGF-BB improves functional collateralization in chronic cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism. 2020; 40(2): 404-19. [DOI:10.1177/0271678X18818298]
62. Salmeron KE, Maniskas ME, Edwards DN, Wong R, Rajkovic I, Trout A, et al. Interleukin 1 alpha administration is neuroprotective and neuro-restorative following experimental ischemic stroke. Journal of neuroinflammation. 2019; 16(1): 1-14. [DOI:10.1186/s12974-019-1599-9]
63. Saini MG, Pinteaux E, Lee B, Bix GJ. Oxygen-glucose deprivation and interleukin‐1α trigger the release of perlecan LG3 by cells of neurovascular unit. Journal of neurochemistry. 2011; 119(4): 760-71. [DOI:10.1111/j.1471-4159.2011.07484.x]
64. Ye F, Jin X-Q, Chen G-H, Den X-L, Zheng Y-Q, Li C-Y. Polymorphisms of interleukin-1 and interleukin-6 genes on the risk of ischemic stroke in a meta- analysis. Gene. 2012; 499(1): 61-9. [DOI:10.1016/j.gene.2012.02.026]
65. Tso AR, Merino JG, Warach S. Interleukin-6− 174G/C polymorphism and ischemic stroke: a systematic review. Stroke. 2007; 38(11): 3070-5. [DOI:10.1161/STROKEAHA.107.492231]
66. Feng Q, Wang Y, Yang Y. Neuroprotective effect of interleukin-6 in a rat model of cerebral ischemia. Experimental and therapeutic medicine. 2015; 9(5): 1695-701. [DOI:10.3892/etm.2015.2363]
67. Shaafi S, Sharifipour E, Rahmanifar R, Hejazi S, Andalib S, Nikanfar M, et al. Interleukin, 6-a reliable prognostic factor for ischemic stroke. Iranian journal of neurology. 2014; 13(2): 70.
68. Aref HMA, Fahmy NA, Khalil SH, Ahmed MF, ElSadek A, Abdulghani MO. Role of interleukin-6 in ischemic stroke outcome. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2020; 56(1): 1-7. [DOI:10.1186/s41983-019-0121-8]
69. Georgakis MK, Malik R, Gill D, Franceschini N, Sudlow CL, Dichgans M. Interleukin-6 signaling effects on ischemic stroke and other cardiovascular outcomes: a Mendelian randomization study. Circulation: Genomic and Precision Medicine. 2020; 13(3): e002872. [DOI:10.1101/19007682]
70. Seidkhani-Nahal A, Khosravi A, Mirzaei A, Basati G, Abbasi M, Noori-Zadeh A. Serum vascular endothelial growth factor (VEGF) levels in ischemic stroke patients: a systematic review and meta- analysis of case-control studies. Neurological Sciences. 2021; 42(5): 1811-20. [DOI:10.1007/s10072-020-04698-7]
71. Shim JW, Madsen JR. VEGF signaling in neurological disorders. International journal of molecular sciences. 2018; 19(1): 275. [DOI:10.3390/ijms19010275]
72. Ma R, Xie Q, Li H, Guo X, Wang J, Li Y, et al. l-Borneol Exerted the Neuroprotective Effect by Promoting Angiogenesis Coupled With Neurogenesis via Ang1-VEGF-BDNF Pathway. Frontiers in Pharmacology. 2021; 12. [DOI:10.3389/fphar.2021.641894]
73. Zhang W, Wu Y, Chen H, Yu D, Zhao J, Chen J. Neuroprotective effects of SOX5 against ischemic stroke by regulating VEGF/PI3K/AKT pathway. Gene. 2021; 767: 145148. [DOI:10.1016/j.gene.2020.145148]
74. Shi F-P, Wang X-H, Zhang H-X, Shang M-M, Liu X-X, Sun H-M, et al. MiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF). Iranian journal of basic medical sciences. 2018; 21(3): 318.
75. Prodjohardjono A, Vidyanti AN, Susianti NA, Sutarni S, Setyopranoto I. Higher level of acute serum VEGF and larger infarct volume are more frequently associated with post-stroke cognitive impairment. Plos one. 2020; 15(10): e0239370. [DOI:10.1371/journal.pone.0239370]
76. Le Y-Z, Xu B, Chucair-Elliott AJ, Zhang H, Zhu M. VEGF Mediates Retinal Müller Cell Viability and Neuroprotection through BDNF in Diabetes. Biomolecules. 2021; 11(5): 712. [DOI:10.3390/biom11050712]
77. Zhu Z, Xu T, Guo D, Huangfu X, Zhong C, Yang J, et al. Serum hepatocyte growth factor is probably associated with 3-month prognosis of acute ischemic stroke. Stroke. 2018; 49(2): 377-83. [DOI:10.1161/STROKEAHA.117.019476]
78. Chaparro RE, Izutsu M, Sasaki T, Sheng H, Zheng Y, Sadeghian H, et al. Sustained functional improvement by hepatocyte growth factor-like small molecule BB3 after focal cerebral ischemia in rats and mice. Journal of Cerebral Blood Flow & Metabolism. 2015; 35(6): 1044-53. [DOI:10.1038/jcbfm.2015.23]
79. Nagayama T, Nagayama M, Kohara S, Kamiguchi H, Shibuya M, Katoh Y, et al. Post-ischemic delayed expression of hepatocyte growth factor and c-Met in mouse brain following focal cerebral ischemia. Brain research. 2004; 999(2): 155-66. [DOI:10.1016/j.brainres.2003.11.052]
80. Rajpathak SN, Wang T, Wassertheil-Smoller S, Strickler HD, Kaplan RC, McGinn AP, et al. Hepatocyte growth factor and the risk of ischemic stroke developing among postmenopausal women: results from the Women's Health Initiative. Stroke. 2010; 41(5): 857-62. [DOI:10.1161/STROKEAHA.109.567719]
81. Doeppner TR, Kaltwasser B, ElAli A, Zechariah A, Hermann DM, Bähr M. Acute hepatocyte growth factor treatment induces long-term neuroprotection and stroke recovery via mechanisms involving neural precursor cell proliferation and differentiation. Journal of Cerebral Blood Flow & Metabolism. 2011; 31(5): 1251-62. [DOI:10.1038/jcbfm.2010.211]
82. Zhao H, Li F, Huang Y, Zhang S, Li L, Yang Z, et al. The incremental prognostic value of sIL-2R and HGF in acute ischemic stroke. 2020. [DOI:10.21203/rs.2.21269/v2]
83. Petrone AB, Simpkins JW, Barr TL. 17β-estradiol and inflammation: implications for ischemic stroke. Aging and disease. 2014; 5(5): 340. [DOI:10.14336/ad.2014.0500340]
84. Hu J, Lin JH, Jiménez MC, Manson JE, Hankinson SE, Rexrode KM. Plasma Estradiol and Testosterone Levels and Ischemic Stroke in Postmenopausal Women. Stroke. 2020; 51(4): 1297-300. [DOI:10.1161/STROKEAHA.119.028588]
85. Zhao TZ, Ding Q, Hu J, He SM, Shi F, Ma LT. GPER expressed on microglia mediates the anti‐ inflammatory effect of estradiol in ischemic stroke. Brain and behavior. 2016; 6(4): e00449. [DOI:10.1002/brb3.449]
86. Kwan P, Pikula A. Ischemic stroke in a transgender woman receiving estrogen therapy. Canadian Journal of Neurological Sciences. 2019; 46 (1): 145-6. [DOI:10.1017/cjn.2018.374]
87. Bazzigaluppi P, Adams C, Koletar MM, Dorr A, Pikula A, Carlen PL, et al. Oophorectomy reduces estradiol levels and long-term spontaneous neurovascular recovery in a female rat model of focal ischemic stroke. Frontiers in molecular neuroscience. 2018; 11: 338. [DOI:10.3389/fnmol.2018.00338]
88. Prokai-Tatrai K, Prokai L. 17β-Estradiol as a neuroprotective agent. Sex Hormones in Neurodegenerative Processes and Diseases. 2018: 21-39. [DOI:10.5772/intechopen.72682]
89. Zheng T, Shi Y, Zhang J, Peng J, Zhang X, Chen K, et al. MiR-130a exerts neuroprotective effects against ischemic stroke through PTEN/PI3K/AKT pathway. Biomedicine & Pharmacotherapy. 2019; 117: 109117. [DOI:10.1016/j.biopha.2019.109117]
90. Duan J, Cui J, Yang Z, Guo C, Cao J, Xi M, et al. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3β/Nrf2 signaling. Journal of neuroinflammation. 2019; 16(1): 1-16. [DOI:10.1186/s12974-019-1406-7]
91. Davis SM, Collier LA, Leonardo CC, Seifert HA, Ajmo CT, Pennypacker KR. Leukemia inhibitory factor protects neurons from ischemic damage via upregulation of superoxide dismutase 3. Molecular neurobiology. 2017; 54(1): 608-22. [DOI:10.1007/s12035-015-9587-2]
92. Younis NS, Mohamed ME. Sandalwood oil neuroprotective effects on middle cerebral artery occlusion model of ischemic brain stroke. Pharmacognosy Magazine. 2020; 16(68): 117. [DOI:10.4103/pm.pm_398_19]
93. Li L, Tovmasyan A, Sheng H, Xu B, Sampaio RS, Reboucas JS, et al. Fe porphyrin-based SOD mimic and redox-active compound,(OH) FeTnHex-2-PyP4+, in a rodent ischemic stroke (MCAO) model: efficacy and pharmacokinetics as compared to its mn analogue,(H2O) MnTnHeX-2-PyP5+. Antioxidants. 2020; 9(6):467. [DOI:10.3390/antiox9060467]
94. Davis SM, Collier LA, Winford ED, Leonardo CC, Ajmo CT, Foran EA, et al. Leukemia inhibitory factor modulates the peripheral immune response in a rat model of emergent large vessel occlusion. Journal of neuroinflammation. 2018; 15(1): 1-17. [DOI:10.1186/s12974-018-1326-y]
95. Davis SM, Collier LA, Foran EA, Leonardo CC, Ajmo CT, Pennypacker KR. Neuroprotective activity of leukemia inhibitory factor is relayed through myeloid zinc finger-1 in a rat model of stroke. Metabolic brain disease. 2019; 34(2): 631-40. [DOI:10.1007/s11011-018-0376-2]
96. Davis SM, Pennypacker KR. Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochemistry international. 2017; 107: 23-32. [DOI:10.1016/j.neuint.2016.12.007]
97. Janssens K, Van den Haute C, Baekelandt V, Lucas S, Van Horssen J, Somers V, et al. Leukemia inhibitory factor tips the immune balance towards regulatory T cells in multiple sclerosis. Brain, behavior, and immunity. 2015; 45: 180-8. [DOI:10.1016/j.bbi.2014.11.010]
98. Lin J, Niimi Y, Clausi MG, Kanal HD, Levison SW. Neuroregenerative and protective functions of Leukemia Inhibitory Factor in perinatal hypoxic-ischemic brain injury. Experimental neurology. 2020; 330: 113324. [DOI:10.1016/j.expneurol.2020.113324]
99. Liu L, Zhang Q, Li M, Wang N, Li C, Song D, et al. Early Post-Stroke Electroacupuncture Promotes Motor Function Recovery in Post-Ischemic Rats by Increasing the Blood and Brain Irisin. Neuropsychiatric Disease and Treatment. 2021; 17: 695. [DOI:10.2147/NDT.S290148]
100. Yu Q, Li G, Ding Q, Tao L, Li J, Sun L, et al. Irisin protects brain against ischemia/reperfusion injury through suppressing TLR4/MyD88 pathway. Cerebrovascular Diseases. 2020 (4) 49: 346-5. [DOI:10.1159/000505961]
101. Liu Y, Zhu C, Guo J, Chen Y, Meng C. The neuroprotective effect of irisin in ischemic stroke. Frontiers in aging neuroscience. 2020; 12: 475. [DOI:10.3389/fnagi.2020.588958]
102. Perakakis N, Triantafyllou GA, Fernández-Real JM, Huh JY, Park KH, Seufert J, et al. Physiology and role of irisin in glucose homeostasis. Nature reviews endocrinology. 2017; 13(6): 324-37. [DOI:10.1038/nrendo.2016.221]
103. Guo P, Jin Z, Wu H, Li X, Ke J, Zhang Z, et al. Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain and behavior. 2019; 9(10): e01425. [DOI:10.1002/brb3.1425]
104. Wu H, Guo P, Jin Z, Li X, Yang X, Tang C, et al. Serum levels of irisin predict short-term outcomes in ischemic stroke. Cytokine. 2019; 122: 154303. [DOI:10.1016/j.cyto.2018.02.017]
105. Tu W-J, Qiu H-C, Cao J-L, Liu Q, Zeng X-W, Zhao J-Z. Decreased concentration of irisin is associated with poor functional outcome in ischemic stroke. Neurotherapeutics. 2018; 15(4): 1158-67. [DOI:10.1007/s13311-018-0651-2]
106. Li D-J, Li Y-H, Yuan H-B, Qu L-F, Wang P. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism. 2017; 68: 31-42. [DOI:10.1016/j.metabol.2016.12.003]
107. de Araújo Fernandes JG, Victoria ECG, de Brito Toscano EC, Ferreira RN, Silva DG, da Silva Oliveira B, et al. High levels of NGF during anxiety-like behavior in a murine model of brain ischemic stroke. Neurology, Psychiatry and Brain Research. 2020; 38: 114-20. [DOI:10.1016/j.npbr.2020.10.002]
108. Aloe L, Rocco ML. NGF and therapeutic prospective: what have we learned from the NGF transgenic models? Annali dell'Istituto superiore di sanita. 2015; 51: 5-10.
109. Yang J, Wu S, Hou L, Zhu D, Yin S, Yang G, et al. Therapeutic effects of simultaneous delivery of nerve growth factor mRNA and protein via exosomes on cerebral ischemia. Molecular Therapy-Nucleic Acids. 2020; 21: 512-22. [DOI:10.1016/j.omtn.2020.06.013]
110. Chen B, Zhang Y, Chen S, Xuran L, Dong J, Chen W, et al. The role of vascular endothelial growth factor in ischemic stroke. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2021; 76(4): 127-31.
111. Cao JY, Lin Y, Han YF, Ding SH, Fan YL, Pan YH, et al. Expression of nerve growth factor carried by pseudotyped lentivirus improves neuron survival and cognitive functional recovery of post‐ischemia in rats. CNS neuroscience & therapeutics. 2018; 24(6): 508-18. [DOI:10.1111/cns.12818]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

soluki M, mahmoudi F, abdolmaleki A. Therapeutic Factors in Ischemic Stroke Control. Shefaye Khatam 2022; 10 (4) :77-91
URL: http://shefayekhatam.ir/article-1-2250-fa.html

سلوکی میلاد، محمودی فریبا، عبدالملکی آرش. فاکتورهای درمانی در کنترل سکته مغزی ایسکمیک. مجله علوم اعصاب شفای خاتم 1401; 10 (4) :91-77

URL: http://shefayekhatam.ir/article-1-2250-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 4 - ( پاييز 1401 ) برگشت به فهرست نسخه ها
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.06 seconds with 30 queries by YEKTAWEB 4540