[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit ::
Main Menu
Journal Information::
Articles Archive::
Guide for Authors::
For Reviewers::
Ethical Statements::
Site Facilities::
Contact us::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Copyright Policies




Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.

:: Volume 10, Issue 3 (Summer 2022) ::
Shefaye Khatam 2022, 10(3): 113-122 Back to browse issues page
Evaluation of Neuropharmacological Effects of Ginger: A Narrative Review
Mahan Kajkolah , Fatemeh Mousavi , Ashkan Asgari , Asadollah Asadi , Arash Abdolmaleki *
Department of Bioinformatics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran , abdolmalekiarash1364@uma.ac.ir
Abstract:   (1033 Views)
Introduction: The current mode of treatment based on synthetic drugs is expensive and causes genetic and metabolic alterations. However, a safe mode of treatment is needed to control the development and progression of the disease. According to this, herbal medicines and their compounds have less toxicity and side effects than conventional medicines. It is proven that herbal medicines can play an important role in disease management through their biological activities. The medicinal value of these plants lies in some chemicals that have a specific physiological function in the human body. Ginger is mentioned as one of the most important herbal remedies in many ancient texts of traditional medicine. It also controls a wide range of diseases in traditional medicine. In addition, ginger has strong anti-inflammatory, anti-appetite, and antioxidant effects (to control the production of free radicals). Furthermore, it has been widely used to treat nervous system diseases, such as memory impairment, epilepsy, neurotoxicity, and pain. Moreover, the majority of therapeutic properties of this plant are due to the presence of 6-Shogaol, which is a major bioactive component of this plant. Conclusion: Ginger and its components could be considered promising factors in the treatment of some neurological disorders.
Keywords: Ginger, Epilepsy, Inflammation, Antioxidants
Full-Text [PDF 534 kb]   (1095 Downloads)    
Type of Study: Review --- Open Access, CC-BY-NC | Subject: Neurophysiology
1. Khajebishak Y, Payahoo L. Pomegranate: Its health effects from the Holy Quran and nutrition science view. Journal of Islamic and Iranian Traditional Medicine. 2015; 5(4): 310-23.
2. Abdolmaleki A, Akram M, Saeed MM, Asadi A, Kajkolah M. Herbal medicine as neuroprotective potential agent in human and animal models: a historical overview. Journal of Pharmaceutical Care. 2020: 75-82. [DOI:10.18502/jpc.v8i2.3832]
3. Kumar G, Karthik L, Rao KB. A review on pharmacological and phytochemical properties of Zingiber officinale Roscoe (Zingiberaceae). Journal of Pharmacy Research. 2011; 4(9): 2963-6.
4. Prasad S, Tyagi AK. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterology research and practice. 2015; 2015. [DOI:10.1155/2015/142979]
5. Ma R-H, Ni Z-J, Zhu Y-Y, Thakur K, Zhang F, Zhang Y-Y, et al. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food & Function. 2021; 12(2): 519-42. [DOI:10.1039/D0FO02834G]
6. Grzanna R, Lindmark L, Frondoza CG. Ginger-an herbal medicinal product with broad anti-inflammatory actions. Journal of medicinal food. 2005; 8(2): 125-32. [DOI:10.1089/jmf.2005.8.125]
7. Liu Y, Whelan RJ, Pattnaik BR, Ludwig K, Subudhi E, Rowland H, et al. Terpenoids from Zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53. PloS one. 2012; 7(12): e53178. [DOI:10.1371/journal.pone.0053178]
8. Ha SK, Moon E, Ju MS, Kim DH, Ryu JH, Oh MS, et al. 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology. 2012; 63(2): 211-23. [DOI:10.1016/j.neuropharm.2012.03.016]
9. Sharma P, Singh R. Neuroprotective effect of ginger juice against dichlorvos and lindane induced toxicity in wistar rats. Planta Medica. 2011; 77(05): P_122. [DOI:10.1055/s-0031-1273651]
10. Mashhadi NS, Ghiasvand R, Askari G, Hariri M, Darvishi L, Mofid MR. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. International journal of preventive medicine. 2013; 4(Suppl 1): S36.
11. Wang S, Zhang C, Yang G, Yang Y. Biological properties of 6-gingerol: a brief review. Natural product communications. 2014; 9(7): 1934578X1400900736. [DOI:10.1177/1934578X1400900736]
12. Kiyama R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. The Journal of Nutritional Biochemistry. 2020: 108486. [DOI:10.1016/j.jnutbio.2020.108486]
13. Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol,[8]-gingerol,[10]-gingerol and [6]-shogaol. Journal of ethnopharmacology. 2010; 127(2): 515-20. [DOI:10.1016/j.jep.2009.10.004]
14. Manasa D, Srinivas P, Sowbhagya H. Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry. 2013; 139(1-4): 509-14. [DOI:10.1016/j.foodchem.2013.01.099]
15. Jo SK, Kim IS, Rehman SU, Ha SK, Park H-Y, Park YK, et al. Characterization of metabolites produced from the biotransformation of 6-shogaol formed by Aspergillus niger. European Food Research and Technology. 2016; 242(1): 137-42. [DOI:10.1007/s00217-015-2519-6]
16. Hemalatha K, Stanely Mainzen Prince P. Antihyperlipidaemic, antihypertrophic, and reducing effects of zingerone on experimentally induced myocardial infarcted rats. Journal of biochemical and molecular toxicology. 2015; 29(4): 182-8. [DOI:10.1002/jbt.21683]
17. Hsiang C-Y, Lo H-Y, Huang H-C, Li C-C, Wu S-L, Ho T-Y. Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-κB activity and interleukin-1β signalling pathway. Food chemistry. 2013; 136(1): 170-7. [DOI:10.1016/j.foodchem.2012.07.124]
18. Viljoen E, Visser J, Koen N, Musekiwa A. A systematic review and meta-analysis of the effect and safety of ginger in the treatment of pregnancy-associated nausea and vomiting. Nutr J. 2014; 13: 20. [DOI:10.1186/1475-2891-13-20]
19. Reeve A, Simcox E, Turnbull D. Ageing and Parkinson's disease: why is advancing age the biggest risk factor? Ageing research reviews. 2014; 14: 19-30. [DOI:10.1016/j.arr.2014.01.004]
20. Samii A, Nutt JG, Ransom BR. Parkinson's disease. Lancet. 2004; 363(9423): 1783-93. [DOI:10.1016/S0140-6736(04)16305-8]
21. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003; 39(6): 889-909. [DOI:10.1016/S0896-6273(03)00568-3]
22. Pires AO, Teixeira FG, Mendes-Pinheiro B, Serra SC, Sousa N, Salgado AJ. Old and new challenges in Parkinson's disease therapeutics. Progress in neurobiology. 2017; 156: 69-89. [DOI:10.1016/j.pneurobio.2017.04.006]
23. Müller T. Motor complications, levodopa metabolism and progression of Parkinson's disease. Expert opinion on drug metabolism & toxicology. 2011; 7(7): 847-55. [DOI:10.1517/17425255.2011.575779]
24. Park G, Kim HG, Ju MS, Ha SK, Park Y, Kim SY, et al. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation. Acta Pharmacologica Sinica. 2013; 34(9): 1131-9. [DOI:10.1038/aps.2013.57]
25. Peng S, Yao J, Liu Y, Duan D, Zhang X, Fang J. Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol. Food & function. 2015; 6(8): 2813-23. [DOI:10.1039/C5FO00214A]
26. Choi JS, Bae WY, Park C, Jeong JW. Zingerone activates VMAT2 during MPP+‐induced Cell Death. Phytotherapy Research. 2015; 29(11): 1783-90. [DOI:10.1002/ptr.5435]
27. Knopman DS, Petersen RC, editors. Mild cognitive impairment and mild dementia: a clinical perspective. Mayo Clinic Proceedings; 2014: Elsevier. [DOI:10.1016/j.mayocp.2014.06.019]
28. Kim HG, Oh MS. Memory-enhancing effect of Mori Fructus via induction of nerve growth factor. British Journal of Nutrition. 2013; 110(1): 86-94. [DOI:10.1017/S0007114512004710]
29. Choi JG, Kim SY, Jeong M, Oh MS. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacol Ther. 2018; 182: 56-69. [DOI:10.1016/j.pharmthera.2017.08.010]
30. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food chemistry. 2001; 49(11): 5165-70. [DOI:10.1021/jf010697n]
31. Astley SB. Dietary antioxidants: past, present and future? Trends in food science & technology (Regular ed). 2003; 14(3): 93-8. [DOI:10.1016/S0924-2244(02)00281-9]
32. Atoui AK, Mansouri A, Boskou G, Kefalas P. Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chemistry. 2005; 89(1): 27-36. [DOI:10.1016/j.foodchem.2004.01.075]
33. Hraš AR, Hadolin M, Knez Ž, Bauman D. Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food chemistry. 2000; 71(2): 229-33. [DOI:10.1016/S0308-8146(00)00161-8]
34. Walton NJ, Brown DE. Chemicals from plants: perspectives on plant secondary products: World Scientific; 1999. [DOI:10.1142/3203]
35. McCall MR, Frei B. Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radical Biology and Medicine. 1999; 26(7-8): 1034-53. [DOI:10.1016/S0891-5849(98)00302-5]
36. Wang M-Y, West BJ, Jensen CJ, Nowicki D, Su C, Palu AK, et al. Morinda citrifolia (Noni): a literature review and recent advances in Noni research. Acta Pharmacologica Sinica. 2002; 23(12): 1127-41.
37. Yingming P, Ying L, Hengshan W, Min L. Antioxidant activities of several Chinese medicine herbs. Food chemistry. 2004; 88(3): 347-50. [DOI:10.1016/j.foodchem.2004.02.002]
38. Salariya AM, Habib F. Antioxidant activity of ginger extract in sunflower oil. Journal of the Science of Food and Agriculture. 2003; 83(7): 624-9. [DOI:10.1002/jsfa.1318]
39. Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food chemistry. 2006; 97(4): 654-60. [DOI:10.1016/j.foodchem.2005.04.028]
40. Rozanida A, Nurul Izza N, Mohd Helme M, Zanariah H. Xanwhite TM-A cosmeceutical product from species in the family Zingiberaceae. Forest Res Inst Malaysia Selangor. 2005; 14: 31-6.
41. Rozanida A, Izza NN, Helme NM, Zanariah H. Harnessing Cures from Nature: Trends and Prospects. 2006.
42. Louli V, Ragoussis N, Magoulas K. Recovery of phenolic antioxidants from wine industry by-products. Bioresource technology. 2004; 92(2): 201-8. [DOI:10.1016/j.biortech.2003.06.002]
43. Elattar T, Virji A. The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer research. 2000; 20(3A): 1733-8.
44. Sohi KK, Mittal N, Hundal MK, Khanduja KL. Gallic acid, an antioxidant, exhibits antiapoptotic potential in normal human lymphocytes: A Bcl-2 independent mechanism. Journal of nutritional science and vitaminology. 2003; 49(4): 221-7. [DOI:10.3177/jnsv.49.221]
45. Chen R-L, Balami JS, Esiri MM, Chen L-K, Buchan AM. Ischemic stroke in the elderly: an overview of evidence. Nature Reviews Neurology. 2010; 6(5): 256-65. [DOI:10.1038/nrneurol.2010.36]
46. Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol. 2010; 67(1): 41-52. [DOI:10.1002/ana.21798]
47. Sohrabji F, Bake S, Lewis DK. Age-related changes in brain support cells: Implications for stroke severity. Neurochemistry international. 2013; 63(4): 291-301. [DOI:10.1016/j.neuint.2013.06.013]
48. Jittiwat J, Wattanathorn J. Ginger pharmacopuncture improves cognitive impairment and oxidative stress following cerebral ischemia. Journal of Acupuncture and Meridian Studies. 2012; 5(6): 295-300. [DOI:10.1016/j.jams.2012.09.003]
49. Wattanathorn J, Jittiwat J, Tongun T, Muchimapura S, Ingkaninan K. Zingiber officinale mitigates brain damage and improves memory impairment in focal cerebral ischemic rat. Evidence-Based Complementary and Alternative Medicine. 2010; 2011. [DOI:10.1155/2011/429505]
50. Kumar A, Gupta V. A review on animal models of stroke: an update. Brain research bulletin. 2016; 122: 35-44. [DOI:10.1016/j.brainresbull.2016.02.016]
51. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxidants & redox signaling. 2011; 14(8): 1505-17. [DOI:10.1089/ars.2010.3576]
52. Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS biology. 2010; 8(9): e1000479. [DOI:10.1371/journal.pbio.1000479]
53. Na J-Y, Song K, Lee J-W, Kim S, Kwon J. Pretreatment of 6-shogaol attenuates oxidative stress and inflammation in middle cerebral artery occlusion-induced mice. European journal of pharmacology. 2016; 788: 241-7. [DOI:10.1016/j.ejphar.2016.06.044]
54. Gaire BP, Kwon OW, Park SH, Chun K-H, Kim SY, Shin DY, et al. Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS One. 2015; 10(3): e0120203. [DOI:10.1371/journal.pone.0120203]
55. Chong CD, Dodick DW, Schlaggar BL, Schwedt TJ. Atypical age-related cortical thinning in episodic migraine. Cephalalgia. 2014; 34(14): 1115-24. [DOI:10.1177/0333102414531157]
56. D'Andrea G, Cevoli S, Cologno D. Herbal therapy in migraine. Neurol Sci. 2014; 35 Suppl 1: 135-40. [DOI:10.1007/s10072-014-1757-x]
57. Diener HC. Headache: insight, understanding, treatment and patient management. Int J Clin Pract Suppl. 2013; (178): 33-6. [DOI:10.1111/ijcp.12049]
58. Cady RK, Goldstein J, Nett R, Mitchell R, Beach ME, Browning R. A double-blind placebo-controlled pilot study of sublingual feverfew and ginger (LipiGesic™ M) in the treatment of migraine. Headache. 2011; 51(7): 1078-86. [DOI:10.1111/j.1526-4610.2011.01910.x]
59. Deleidi M, Jäggle M, Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci. 2015; 9: 172. [DOI:10.3389/fnins.2015.00172]
60. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014; 13(10): 1045-60. [DOI:10.1016/S1474-4422(14)70117-6]
61. Aktas O, Ullrich O, Infante-Duarte C, Nitsch R, Zipp F. Neuronal damage in brain inflammation. Archives of neurology. 2007; 64(2): 185-9. [DOI:10.1001/archneur.64.2.185]
62. Abdolmaleki A, Zahri S, Bayrami A. Rosuvastatin enhanced functional recovery after sciatic nerve injury in the rat. European Journal of Pharmacology. 2020; 882: 173260. [DOI:10.1016/j.ejphar.2020.173260]
63. Ho SC, Chang KS, Lin CC. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem. 2013; 141(3): 3183-91. [DOI:10.1016/j.foodchem.2013.06.010]
64. El-Akabawy G, El-Kholy W. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats. Ann Anat. 2014; 196(2-3): 119-28. [DOI:10.1016/j.aanat.2014.01.003]
65. Sharma P, Singh R. Dichlorvos and lindane induced oxidative stress in rat brain: Protective effects of ginger. Pharmacognosy Res. 2012; 4(1): 27-32. [DOI:10.4103/0974-8490.91031]
66. Feroz SR, Mohamad SB, Lee GS, Malek SN, Tayyab S. Supramolecular interaction of 6-shogaol, a therapeutic agent of Zingiber officinale with human serum albumin as elucidated by spectroscopic, calorimetric and molecular docking methods. Phytomedicine. 2015; 22(6): 621-30. [DOI:10.1016/j.phymed.2015.03.016]
67. Camiña-Tato M, Fernández M, Morcillo-Suárez C, Navarro A, Julià E, Edo MC, et al. Genetic association of CASP8 polymorphisms with primary progressive multiple sclerosis. J Neuroimmunol. 2010; 222(1-2): 70-5. [DOI:10.1016/j.jneuroim.2010.03.003]
68. Hasan KM, Walimuni IS, Abid H, Datta S, Wolinsky JS, Narayana PA. Human brain atlas-based multimodal MRI analysis of volumetry, diffusimetry, relaxometry and lesion distribution in multiple sclerosis patients and healthy adult controls: implications for understanding the pathogenesis of multiple sclerosis and consolidation of quantitative MRI results in MS. J Neurol Sci. 2012; 313(1-2): 99-109. [DOI:10.1016/j.jns.2011.09.015]
69. Fancy SP, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH, et al. Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol. 2010; 225(1): 18-23. [DOI:10.1016/j.expneurol.2009.12.020]
70. Franklin RJ. Remyelination in the CNS: from biology to therapy. Nature Reviews Neuroscience. 2008; 9(11): 839-55. [DOI:10.1038/nrn2480]
71. Soluki M, Mahmoudi F, Abdolmaleki A, Asadi A, Sabahi Namini A. Cerium oxide nanoparticles as a new neuroprotective agent to promote functional recovery in a rat model of sciatic nerve crush injury. British Journal of Neurosurgery. 2020: 1-6. [DOI:10.1080/02688697.2020.1864292]
72. Ghasemi N. Transdifferentiation of human adipose-derived mesenchymal stem cells into oligodendrocyte progenitor cells. Iran J Neurol. 2018; 17(1): 24-30.
73. Kim S, Chang L, Weinstock-Guttman B, Gandhi S, Jakimovski D, Carl E, et al. Complementary and Alternative Medic ne Usage by Multiple Sclerosis Patients: Results from a Prospective Clinical Study. J Altern Complement Med. 2018; 24(6): 596-602. [DOI:10.1089/acm.2017.0268]
74. Skovgaard L, Nicolajsen PH, Pedersen E, Kant M, Fredrikson S, Verhoef M, et al. Use of Complementary and Alternative Medicine among People with Multiple Sclerosis in the Nordic Countries. Autoimmune Dis. 2012; 2012: 841085-. [DOI:10.1155/2012/841085]
75. Jafarzadeh A, Mohammadi-Kordkhayli M, Ahangar-Parvin R, Azizi V, Khoramdel-Azad H, Shamsizadeh A, et al. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease. J Neuroimmunol. 2014; 276(1-2): 80-8. [DOI:10.1016/j.jneuroim.2014.08.614]

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kajkolah M, Mousavi F, Asgari A, Asadi A, Abdolmaleki A. Evaluation of Neuropharmacological Effects of Ginger: A Narrative Review. Shefaye Khatam 2022; 10 (3) :113-122
URL: http://shefayekhatam.ir/article-1-2262-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 10, Issue 3 (Summer 2022) Back to browse issues page
مجله علوم اعصاب شفای خاتم The Neuroscience Journal of Shefaye Khatam
Persian site map - English site map - Created in 0.05 seconds with 45 queries by YEKTAWEB 4642